Carbohydrate sources, alanine and calcium for in vitro multiplication of Eucalyptus cloeziana F. Muell.


  • André Luís Lopes da Silva Department of Technology and Social Sciences (DTCS) State University of Bahia, Juazeiro, Brazil
  • Gabriela Cristina Rech Tormen College of Forestry Engineering, Federal University of Mato Grosso, Cuiabá, Brazil
  • Alexssandra Jéssica Rondon de Figueiredo College of Forestry Engineering, Federal University of Mato Grosso, Cuiabá, Brazil
  • Anatálya dos Santos Ribeiro College of Forestry Engineering, Federal University of Mato Grosso, Cuiabá, Brazil
  • Leandro Freire dos Santos Department of Pharmacy, State University of Central-West of Paraná, Guarapuava, Brazil
  • Jairton Fraga Araújo Department of Technology and Social Sciences, State University of Bahia, Juazeiro, Brazil
  • Gilvano Ebling Brondani Department of Forestry Sciences, Federal University of Lavras, Lavras, Brazil



Amino acid, eucalypt, micropropagation, organogenesis, glucose, liquid medium.


Eucalyptus cloeziana timber is used for the production of coal and sawmills. The production of elite clones is very efficient via micropropagation, however, this technique must be optimized. Therefore, the aims of this study were to evaluate the presence of different levels of sucrose, glucose, combinations of glucose and sucrose, alanine and calcium on the in vitro multiplication of Eucalyptus cloeziana. Isolated shoots of E. cloeziana were multiplicated under the presence of sucrose and glucose at levels of 0, 15, 30, 45 and 60 g L-1. Sucrose and glucose combinations were tested at levels of 0, 7.5, 15.0, 22.5 and 30.0 g L-1. L-alanine was tested in levels of 0, 20, 40, 80 and 160 mg L-1. Calcium supplementation was carried out with combinations of Ca(NO3)2.4H2O and CaCl2.2H2O at the levels of 556; 1,112; 1,668 and 96; 192; 288 mg L-1, respectively. The percentage of survival, oxidation and callogenesis; shoot number and explant length were evaluated after 30 days of culture. The best level of sucrose was 15 g L-1. The best level of glucose was also 15 g L-1 and it presents reduction in the oxidation of the tissues. Glucose and sucrose combinations did not present suitable results. The presence of L-alanine do not favor the multiplication. The best result for calcium supplementation was found at 1,112 mg L-1 Ca(NO3)2.4H2O and 192 mg L-1 CaCl2.2H2O on solid medium, but the liquid medium avoid the oxidation of the explants.


Não há dados estatísticos.

Biografia do Autor

André Luís Lopes da Silva, Department of Technology and Social Sciences (DTCS) State University of Bahia, Juazeiro, Brazil

Possuo graduação em Ciências Biológicas pela Universidade Federal de Santa Maria (2002), especialização em Biologia pela Universidade Federal de Santa Maria (2005) e em Biossegurança pela Universidade Federal de Santa Catarina (2005). Possuo mestrado em Agronomia pela Universidade Federal de Santa Maria (2005). Doutorado em Engenharia de Bioprocessos e Biotecnologia na Universidade Federal do Paraná (UFPR) (2013). Possuo experiência em biologia vegetal com foco em Fisiologia, Genética e Biotecnologia, atuando principalmente nos temas: Cultura de Tecidos Vegetais, Produção de Mudas, Conservação de germoplasma, Biorreatores, Estresses abióticos e Transformação Genética.

Sou membro do corpo editorial do Journal of Biotechnology and Biodiversity e Advances in Forestry Science.

Fui professor dos cursos de graduação em Biotecnologia, Agronomia e Ciências Biológicas e de especialização em Biotecnologia e Especialização em Genética e Genômica Humana da Pontifícia Universidade Católica do Paraná.

Atualmente curso pós-doutorado em Biotecnologia na Universidade Federal do Paraná (2014).

Possuo 54 artigos publicados e mais 3 aguardando publicação.

Atualmente sou orientador de mestrado do Programa de Pós-Graduação em Biotecnologia da Universidade Federal do Tocantins:
e do Programa de Pós-Graduação em Ciências Florestais e Ambientais da Universidade Federal de Mato Grosso:

Links para indicadores acadêmicos:

Lattes Curriculum:

Thomson Reuters ResearcherID:

Scopus Author Identifier:

Google Scholar Citations:


Abdullah, G.R., Al-Khateeb, A.A., & Layous, L.N. 2013. Response of the strawberry cv.“Elsanta”. Micro Propagation in vitro to different carbon sources and concentrations. Jordan Journal of Agricultural Sciences 9(1): 1-10.

Alfenas, A.C., Zauza, E.A.V., Mafia, R.G., & Assis, T.F. 2009. Clonagem e doenças do eucalipto. Editora UFV, Viçosa. 500 p.

Alkowni, R., Solyman, E., & Qauod, H.A. 2017. Introducing some of threatened thymus species to in vitro tissue culturing as an approach for their conservation. Pakistan Journal of Botany 49(1): 259-264.

Aranda-Peres, A.N., Peres, L.E.P., Higashi, E.N., & Martinelli, A.P. 2009. Adjustment of mineral elements in the culture medium for the micropropagation of three Vriesea bromeliads from the Brazilian Atlantic Forest: the importance of calcium. HortScience 44(1): 106-112.

Behrend, J., & Mateles, R.I. 1976. Nitrogen Metabolism in Plant Cell Suspension Cultures: II. Role of Organic Acids during Growth on Ammonia. Plant physiology 58(4): 510-512.

Borisjuk, L., Walenta, S., Weber, H., Mueller-Klieser, W., & Wobus, U. 1998. High-resolution histographical mapping of glucose concentrations in developing cotyledons of Vicia faba in relation to mitotic activity and storage processes: glucose as a possible developmental trigger. The Plant Journal 15(4): 583-591.

Brondani, G.E., Oliveira, L.S., Bergonci, T., Brondani, A.E., Franca, F.A.M., Silva, A.L.L., & Goncalves, A.N. 2013. Chemical sterilization of culture medium: a low cost alternative to in vitro establishment of plants. Scientia Forestalis 41(98): 257-264.

Bunn, E., Senaratna, T., Sivasithamparam, K., & Dixon, K.W. 2005. In vitro propagation of Eucalyptus phylacis L. Johnson and K. Hill., a critically endangered relict from Western Australia. In Vitro Cellular & Developmental Biology-Plant 41(6): 812-815.

Carvalho, D.C., Biasi, L.A., & Telles, C. 2004. Organogênese do caquizeiro ‘Fuyu’ a partir de ápices meristemáticos. Revista Brasileira de Agrociência 10(3): 303-307.

Carvalho, D.C., Silva, A.L.L., Schuck, M.R., Purcino, M., Tanno, G.N., & Biasi, L.A. 2013. Fox grape cv. Bordô (Vitis labrusca L.) and grapevine cv. Chardonnay (Vitis vinifera L.) cultivated in vitro under different carbohydrates, amino acids and 6-Benzylaminopurine levels. Brazilian Archives of Biology and Technology 56(2): 191-201.

Cassells, A.C., & Walsh, C. 1994. The influence of gas permeability of the culture lid on calcium uptake and stomatal function in Dianthus microplants. Plant cell, tissue and organ culture 37(2): 171-178.

Cordeiro, G.M., Brondani, G.E., Oliveira, L.S., & Almeida, M. 2014. Meio de cultura, BAP e ANA na multiplicação in vitro de clones de Eucalyptus globulus Labill. Scientia Forestalis 42(103): 337-344.

Cuenca, B., & Vieitez, A. 2000. Influence of carbon source on shoot multiplication and adventitious bud regeneration in in vitro beech cultures. Plant Growth Regulation 32(1): 1-12.

EMBRAPA. 1990. SOC - Software Científico. Núcleo Tecnológico para Informática, Campinas.

Ferreira, W.M., Vasconcelos, M.C., Silva, C.C.N., Oliveira, H.R., & Suzuki, R.M. 2017. Asymbiotic germination, multiplication and development of Alatiglossum fuscopetalum (Orchidaceae) as affected by culture medium, sucrose and growth regulators. Iheringia Série Botânica. 72(1): 57-65.

Furlan-Cardoso, F., Gavilan, N.H., Zorz, A.Z., Oliveira, L.S., Konzen, E.R., & Brondani, G.E. 2018. Active chlorine and charcoal affect the in vitro culture of Bambusa vulgaris. Bosque 39(1): 61-70.

Gauchan, D. 2012. Effect of different sugars on shoot regeneration of maize (Zea mays L.). Kathmandu University Journal of Science, Engineering and Technology 8(1): 119-124.

George, E.F., Hall, M.A., & De Klerk, G.-J. 2008. The components of plant tissue culture media I: macro-and micro-nutrients Plant propagation by tissue culture (pp. 65-113): Springer.

Gollo, A.L., Silva, A.L.L., Lima, K.K.D., Costa, J.L., Camara, M.C., Biasi, L.A., Rodrigues, C., Vandenberghe, L.P.D.S., Soccol, V.T., & Soccol, C.R. 2016. Developing a plant culture medium composed of vinasse originating from Haematococcus pluvialis culture. Pakistan Journal of Botany 48(1): 295-303.

Harris, G. 1956. Amino acids as sources of nitrogen for the growth of isolated oat embryos. New Phytologist 55(2): 253-268.

Houssain, A., Hossain, T., Ali, R., & Rahman, M. 2005. Effect of different carbon sources on in vitro regeneration of Indian Penny wort (Centella asiatica L.). Pakistan Journal of Biological Sciences 8(7): 963-965.

Hyodo, V.C.C.C., Runho, D.S., Oliveira, M.L., & Ferreira, A.O. 2013. Effect of BAP and ZEA Growing Period on Multiplication of Eucalyptus sp. in RITA® Bioreactor. The FASEB Journal 27(1_supplement): 1217.1218-1217.1218. doi: 10.1096/fasebj.27.1_supplement.1217.8

Lloyd, G., & McCown, B. 1980. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proceedings of the International Plant Propagation Society 30: 421-427.

Lv, Y.-W., Wamg, R.-J., LV, Y., Yang, Z.-S., & Wang, Y.-J. 2017. In vitro propagation of Silybum marianum (L.) Gaertn. and genetic fidelity assessment of micropropagated plants. Pakistan Journal of Botany 49(2): 673-680.

Machado, M.P., Silva, A.L.L., Biasi, L.A., Deschamps, C., Bespalhok Filho, J.C., & Zanette, F. 2014. Influence of calcium content of tissue on hyperhydricity and shoot-tip necrosis of in vitro regenerated shoots of Lavandula angustifolia Mill. Brazilian Archives of Biology and Technology 57(5): 636-643.

Madhulatha, P., Kirubakaran, S., & Sakthivel, N. 2006. Effects of carbon sources and auxins on in vitro propagation of banana. Biologia plantarum 50(4): 782-784.

Malavolta, E., Vitti, G.C., & Oliveira, S.A.D. 1997. Avaliação do estado nutricional das plantas. Associação Brasileira para Pesquisa da Potassa e do Fosfato, Piracicaba. 319 p.

McAlister, B., Finnie, J., Watt, M., & Blakeway, F. 2005. Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell, Tissue and Organ Culture 81: 347–358.

Murashige, T., & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia plantarum 15(3): 473-497.

North, J.J., Ndakidemi, P.A., & Laubscher, C.P. 2012. Effects of antioxidants, plant growth regulators and wounding on phenolic compound excretion during micropropagation of Strelitzia reginae. International Journal of Physical Sciences 7(4): 638-646.

Oliveira, Y., Pinto, F., Silva, A.L.L., Guedes, I., Biasi, L.A., & Quoirin, M. 2010. An efficient protocol for micropropagation of Melaleuca alternifolia Cheel. In Vitro Cellular & Developmental Biology-Plant 46(2): 192-197.

Rai, V. 2002. Role of amino acids in plant responses to stresses. Biologia plantarum 45(4): 481-487.

Resende, C., Ribeiro, C., Mendes, G.C., Soares, C.G., Braga, V., da Cruz, B.P., Forzza, R., & Peixoto, P.H. 2016. In vitro culture of Vriesea cacuminis LB Sm. (Bromeliaceae): an endemic species of Ibitipoca State Park, MG, Brazil. Iheringia Série Botânica. 71(1): 55-61.

Romano, A., Noronha, C., & Martins-Loucao, M. 1995. Role of carbohydrates in micropropagation of cork oak. Plant cell, tissue and organ culture 40(2): 159-167.

Silva, A.L.L., Costa, J.L., Alcantara, G.B., Carvalho, D.C., Schuck, M.R., Biasi, L.A., Scheidt, G.N., & Soccol, C.R. 2012. Micropropagation of Nidularium innocentii Lem. and Nidularium procerum Lindm. (Bromeliaceae). Pakistan Journal of Botany 44(3): 1095-1101.

Silva, A.L.L., Dornelles, E.B., Bisognin, D.A., Franco, E.T.H., & Horbach, M.A. 2007. Micropropagation of Dyckia agudensis Irgang & Sobral - an extinction threatened bromeliad. Iheringia Série Botânica 62(1, 2): 39-43.

Silva, A.L.L., Franco, E.T.H., Dornelles, E.B., Bortoli, C.L.R., & Quoirin, M. 2009. In vitro multiplication of Vriesea scalaris E. Morren (Bromeliaceae). Iheringia Série Botânica 64(2): 151-156.

Silva, A.L.L., Franco, E.T.H., Dornelles, E.B., & Gesing, J.P.A. 2008. Micropropagação de Dyckia maritima Baker - Bromeliaceae. Iheringia Série Botânica 63(1): 135-138.

Silva, A.L.L., Gollo, A.L., Brondani, G.E., Horbach, M.A., Oliveira, L.S., Machado, M.P., Lima, K.K.D., & Costa, J.L. 2015. Micropropagation of Eucalyptus saligna Sm. from cotyledonary nodes. Pakistan Journal of Botany 47(1): 311-318.

Silva, A.L.L., Rodrigues, C., Costa, J.L., Machado, M.P., Penha, R.O., Biasi, L.A., Vandenberghe, L.P.S., & Soccol, C.R. 2013. Gibberellic acid fermented extract obtained by solid-state fermentation using citric pulp by Fusarium moniliforme: Influence on Lavandula angustifolia Mill., cultivated in vitro. Pakistan Journal of Botany 45(6): 2057-2064.

Taiz, L., & Zeiger, E. 2004. Fisiologia vegetal. Artmed, Porto Alegre. 719 p.

Trueman, S.J., Hung, C.D., & Wendling, I. 2018. Tissue culture of Corymbia and Eucalyptus. Forests 9(2): 84.

Wang, C., Fu, L., Tong, X., Yang, Q., & Zhang, W. 2012. Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions. Carbohydrate research 347(1): 182-185.

Wotavová-Novotná, K., Vejsadová, H., & Kindlmann, P. 2007. Effects of sugars and growth regulators on in vitro growth of Dactylorhiza species. Biologia plantarum 51(1): 198-200.

Zaprometov, M.N. 1978. Enzymology and regulation of the synthesis of polyphenols in cultured cells. In T. Thorpe (Ed.), Frontiers of Plant Tissue Culture (pp. 335-343). Calgary: University of Calgary Offset Printing Services.

Zorz, A.Z. 2016. Regeneração in vitro de Eucalyptus cloeziana F. Muell. Mestrado em Ciências Florestais e Ambientais Dissertação 75 f., Universidade Federal de Mato Grosso, Cuiabá.




Como Citar

Lopes da Silva, A. L., Rech Tormen, G. C., Rondon de Figueiredo, A. J., dos Santos Ribeiro, A., Freire dos Santos, L., Fraga Araújo, J., & Ebling Brondani, G. (2018). Carbohydrate sources, alanine and calcium for in vitro multiplication of Eucalyptus cloeziana F. Muell. Iheringia, Série Botânica., 73(3), 329–335.