Scape architecture of Schoenoplectus californicus (C.A. Mey.) Soják (Cyperaceae).
Keywords:
aerenchyma, anatomy, diaphragm, morphology, verticalityAbstract
.A. Mey.) Soják, to understand the organization of tissues and structures involved on the vertical architecture of this organ. Thirty scapes were collected in Cachoeira River, Antonina, Paraná, to evaluate quantitative morphological and anatomical traits.
Among the anatomical and morphological analyzed characteristics, the triangle-piramidal shape of the scape, air lacunae with diaphragms and arm cells, scattered vascular bundles and subepidermical fi ber bundles seems to be determinants on the verticality of the scape. The maintenance of scape verticality resides on the balance between the investment on mechanical tissues represented by the organization of fi ber and vascular bundles and aerenchyma, and the investment on the photosynthetic tissue, represented by the thick palisade parenchyma, that involves uniformly the scape, ensuring photosynthetic functions without compromising the sustentation.
Downloads
References
Angulo, R.J. 1990. O manguezal como unidade dos mapas geológicos. In: Simpósio de ecossistemas da costa sul e sudeste brasileira. Resumos Expandidos. São Paulo, v. 2, p. 54-62.
Armstrong, W. 1979. Aeration in higher plants. Advances in Botanical Research, 7: 225-332.
Bigarella, J.J., Becker, R.D., Matos, D.J. & Werner, A. 1978. Serra do Mar e a porção oriental do Estado do Paraná: um problema de segurança ambiental e nacional. Governo do Estado do Paraná/SELP/ADEA, Curitiba.
p.
Boeger, M.R. & Gluzezak, R.M. 2006. Adaptações estruturais de sete espécies de plantas para as condições ambientais da área de dunas de Santa Catarina, Brasil. Iheringia. Série Botânica, 61(1-2): 73-82.
Boeger, M.R.T., Pil, M.W.B.O. & Filho, N.B. 2007. Arquitetura foliar comparativa de Hedychium coronarium J. Koenig (Zingiberaceae) e de Typha domingensis Pers (Typhaceae). Iheringia. Série Botânica, 62(1-2): 113-120.
Brian, R.M. & Raymond, W.L. 2002. Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alternifl ora and S. anglica. Aquatic Botany, 74(2): 109-120.
DeLucia, E.H., Shenoi, H.D., Naidu, S.L., Day, T.A. 1991. Photosynthetic symmetry of sun and shade leaves of different orientations. Oecologia, 87: 51-57.
Dickison, W.C. 2000. Integrative Plant Anatomy. Harcourt Academic Press, São Diego, 544 p.
Dop, P. & Gautié, E. F. 1928. Manuel de Technique Botanique. J. Lamarre, Paris. 594 p.
Empresa Brasileira de Pesquisa Agropecuária - Solos. 2009. Sistema Brasileiro de Classifi cação de Solos. Brasilia: Empresa Brasileira de Pesquisa Agropecuária- Informação Tecnológica; Empresa Brasileira de
Pesquisa Agropecuária – Solos Rio de Janeiro, 306 p.
Evert, R.F. 2006. Esau’s Plant Anatomy: meristems, cells, and tissues of the plant body, they structure, function, and development. John Wiley & Sons, New Jersey. 601 p.
Fávaro, L.F., E.C. Oliveira & N.F. Verani. 2007. Estrutura da população e aspectos reprodutivos do peixe-rei Atherinella brasiliensis (Quoy & Gaimard) (Atheriniformes, Atherinopsidae) em áreas rasas do complexo estuarino de Paranaguá, Paraná, Brasil. Revista Brasileira de Zoologia, 24(4): 1150-1156.
Feder, N. & O’Brien, T.P. 1968. Plant Microtechnique: some principles and new methods. American Journal of Botany, 55(2):123-142.
Gálvez, D. & Pearcy, R.W. 2003. Petiole twisting in the crowns of Psychotria limonensis: implications for light interception and daily carbon gain. Oecologia, 135: 22-29.
Givnish, T.J. 1988. Adaptation to sun vs. shade: a whole-plant perspective. Australian Journal of Plant Physiology, 5: 63-92.
Godin, C. 2000. Representing and encoding plant architecture: a review. Annals of Forest Science, 57(5): 413-438.
Hinchliff, C.E. & Roalson, E.H. 2009. Stem architecture in Eleocharis subgenus Limnochloa (Cyperaceae): Evidence of dynamic morphological evolution in a group of Pantropical sedges. American Journal of Botany, 96(8): 1487–1499.
IBGE. 1992. Manual Técnico da Vegetação Brasileira: Série Manuais Técnicos em Geociências nº 1. Rio de Janeiro. 92 p.
Jackson, M.B. & Armstrong, W. 1999. Formation of aerenchyma and the process of plant ventilation in relation to soil fl ooding and submergence. Plant Biology, 1: 274–287.
Johansen, D.A. 1940. Plant Microthecnique. McGraw- Hill Book Company, New York. 523 p.
Kaul, R.B. 1971. Diaphragms and aerenchyma in Scirpus validus. American Journal of Botany, 58: 808-816.
Kaul, R.B. 1974. Ontogeny of foliar diaphragms in Typha latifolia. American Journal of Botany, 61: 318–323.
Kraus. J.E. & Arduin, M.1997. Manual básico de métodos em morfologia vegetal. Editora da Universidade Federal Rural do Rio de Janeiro, Seropédica, 198 p.
Lange, P. J. de, Gardner, R. O., Champion, P.D. & Tanner, C.C. 1998. Schoenoplectus californicus (Cyperaceae) in New Zealand, New Zealand Journal of Botany, 36: 319-327.
Li, M. & Jones, M.B. 1995. CO2 and O2 transport in the aerenchyma of Cyperus papyrus L. Aquatic Botany, 52: 93-106.
Macía, J. M. & Baslev, H. 2000. Use and management of totora (Choenoplectus californicus, Cyperaceae) in Ecuador. Economic Botany, 54(1): 82-89.
Mott, K.A., Gibson, A.C. & O’Leary, J.W. 1982. The
adaptive signifi cance of amphistomatic leaves. Plant,
Cell and Environment, 5: 455-460.
Mott, K.A. & Michaelson, O. 1991. Amphistomy as an
adaptation to high light intensity in Ambrosia cordifolia
(Compositae). American Journal of Botany, 78: 76-79.
Niklas, K.J. 1993. The scaling of plant height: a
comparison among major plant clades and anatomical
grades. Annals of Botany, 72: 165-172.
Niklas, K.J. 1999. A mechanical perspective on foliage
leaf form and function. New Phytologist, 143: 19–31.
Nobel, P.S. 1991. Physicochemical and Environmental
Plant Physiology. San Diego: Academic Press. 635 p.
Poulson, M.E. & DeLucia, E.H. 1993. Photosynthetic
and structural acclimation to light direction in vertical
leaves of Silphium terebinthinaceum. Oecologia, 95:
-400.
Purnobasuki, H. & Suzuki, M. 2004. Aerenchyma
formation and porosity in root of a mangrove plant,
Sonneratia alba (Lythraceae). Journal of Plant
Research, 117: 465-472.
Reinhardt, D. & Kuhlemeier, C. 2002. Plant architecture.
Embo Reports, 3: 846-851.
Rocha, D.C. & Martins, D. 2011. Adaptações
morfoanatômicas de Cyperaceae ao ambiente aquático.
Planta Daninha, 29(1): 7-15.
Rodrigues, A.C. & Estelita, M.E. 2002. Primary and
secondary development of Cyperus giganteus Vahl
rhizome (Cyperaceae). Revista Brasileira Botânica,
(3): 251-258.
Rodrigues, A.C. & Estelita, M. E. 2004. Anatomia da
raiz de Cyperus giganteus Vahl (Cyperaceae) em
desenvolvimento. Revista Brasileira de Botânica,
(4): 629-638.
Rowlatt, U. & Morshead, H. 1992. Architecture of the leaf
of the greater red mace, Typha latifolia L. Botanical
Journal of the Linnean Society, 110: 161-170.
Sakai, W.S. 1973. Simple method for differential staining
of paraffi n embedded plant material using toluidine
blue. Stain Technology, 43:247-249.
Sculthorpe, C.D. 1967. The Biology of Aquatic Vascular
Plants. Edward Arnold. London. 610 p.
Silva, M.A.B., Bernini, E. & Carmo, T.M.S. 2005.
Características estruturais de bosques de mangue do
estuário do rio São Mateus, ES, Brasil. Acta Botanica
Brasilica, 19(3): 465-471.
Smith, W.K., Bell, D.T. & Shepherd, K.A. 1998. Associations
between leaf structure, orientation and sunlight exposure
in fi ve western Australian Communities. American
Journal of Botany, 85(1): 56-63.
Valladares, F. & Brites, D. 2004. Leaf phyllotaxis: Does it
really affect light capture? Plant Ecology, 174(1): 11-
Vogelmann, T.C., Nishio, J.N. & Smith, W.K. 1996. Leaves
and light capture: light propagation and gradients of
carbon fi xation within leaves. Trends in Plant Science,
: 65-70.
Wagner, W. L., Herbst, D. R. & Sohmer, S. H. 1990. Manual
of the fl owering plants of Hawai’i. Vol. 2. Bishop
Museum special publication 83. Hawai University of
Hawai and Bishop Museum Press. 1853 p.
Williams, W.T. & Barber, D.A. 1961. The functional
signifi cance of aerenchyma in plants. Symposia Society
for Experimental Biology, 15: 132-144