Physiological and biochemical changes in seeds and seedlings of red clover submitted to diesel oil

Autori

  • Fernanda Reolon Tonel
  • Patrícia Marini
  • Caroline Leivas Moraes
  • Juliana de Magalhães Bandeira
  • Leopoldo Mario Baudet Labbé
  • Francisco Amaral Villela
  • Dario Munt de Moraes

Parole chiave:

germination, phytoremediation, plant growth, Trifolium pratense L.

Abstract

The aim of this study was to verify the seed and seedling tolerances of red clover exposed to increasing diesel oil concentrations, through physiological and biochemical changes, in order to indicate this species for use in possible phytoremediation of contaminated areas. Therefore, the substrate was moistened with different diesel oil concentrations (0; 0.1; 0.2; 0.3% v/v) and the seeds were placed to germinate, and the following were later assessed: fi rst germination count (FGC), germination speed index (GSI), electrical conductivity (EC), initial growth, and activity of hydrolytic enzymes. The germination, the FGC, and the GSI decreased as the diesel oil concentrations increased, as well as seed α-amylase and phosphatase enzyme activity. There was a decrease of EC in both incubation periods in the highest diesel oil concentration. The physiological and biochemical changes caused by diesel oil in red clover seeds and seedlings demonstrate that the germination and early growth of this species is harmed.

Downloads

I dati di download non sono ancora disponibili.

Riferimenti bibliografici

Aoac - Association of offi cial agricultural chemists. 1965. Offi cial methods of analysis. 10 ed. Editorial Board. Washington. 909p. Disponível em: http://www.aoac. org/ Acesso em 20.03.2013.

Adam, G. & Duncan, H. 2002. Infl uence of diesel fuel on seed germination. Journal Environmental Polluion, 120:363–370.

Andrade, J.A., Augusto, F. & Jardim, I.C.S.F. 2010. Biorremediação de solos contaminados por petróleo e seus derivados. Eclética Química, 35:17-43.

Aguiar, C.R.C., Lopes, B.C., Barbosa, M.V.D.B., Balieiro, F.C. & Gomes, M.M. 2012. Fitorremediação de solos contaminados por petróleo. Revista Trópica – Ciências Agrárias e Biológicas, 6:3-9.

Besalatpour, A., Khoshgoftarmanesh, A.H., Hajabbasi, M.A. & Afyuni, M. 2008. Germination and Growth of Selected Plants in a Petroleum Contaminated Calcareous Soil. Soil & Sediment Contamination, 17:665-676.

Brasil. 2009. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília, 395p.

Coutinho, H.D. & Barbosa, A.R. 2007. Fitorremediação: Considerações gerais e características de utilização. Silva Lusitana, 15:103-117.

Hernandéz, I. & Mager, D. 2003. Fitorremediar suelos contaminados con un crudo de petróleo liviano. Bioagro, 15:149-155.

Jacques, R.J.S., Bento, F.M., Antoniolli, Z.I. & Camargo, F.A.O. 2007. Biorremediação de solos contaminados com hidrocarbonetos aromáticos policíclicos. Ciência Rural, 37:1192-1201.

Krzyzanowski, F.C., Vieira, R.D. & França neto, J.B. 1999. Vigor de sementes: conceitos e testes. Associação Brasileira de Tecnologia de Sementes, Londrina, 218p.

Maguire, J.D. 1962. Speed of germination-aid in selection aid evolution for seedling emergence and vigor. Crop Science, 2(2):176-177.

Marín, J.A., Moreno, J.L., Hernández, T. & García, C. 2006. Bioremediation by composting of heavy oil refi nery sludge in semiarid conditions. Biodegradation, 17: 251-261.

Merkl, N., Schultze-kraft, R. & Infante, C. 2004b. Phytoremediation in the tropics – The effect of Crude Oil on the Growth of Tropical Plants. Bioremediation Journal, 8:177-184.

Santos, C.M.R., Menezes, N.L. & Villela, F.A. 2005. Modificações fisiológicas e bioquímicas em sementes de feijão no armazenamento. Revista Brasileira de Sementes, 27:104-114.

Soleimani, M., Afyuni, M., Hajabbasi, M.A., Nourbakhsh F., Sabzalian, M.A. & Christensen, J.H. 2010. Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses.

Chemosphere, 81:1084-1090.

Sharma, P. & Dubey, R.S. 2005. Lead toxicity in plants. Brazilian Journal Plant Physiology, 17:35-52.

Smith, M.J., Flowers, T.H., Duncab, H.J. & Alder, J. 2006. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil with aged PAHs

residues. Environmental Pollution, 141:519-525.

Spinelli, A.C.O.C., Kato, M.T., Lima, E.S. & Gavazza, L. 2012. Bioremediation of a tropical clay soil contaminated with diesel oil. Journal of Environmental Management, 113:510-516.

White Jr., P.M., Wolf, D.C., Gregory, .J.T. & Reynolds, C.M. 2006. Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water, Air, and Soil Pollution, 169:207-220.

Downloads

Pubblicato

2013-11-16

Come citare

Tonel, F. R., Marini, P., Moraes, C. L., Bandeira, J. de M., Labbé, L. M. B., Villela, F. A., & Moraes, D. M. de. (2013). Physiological and biochemical changes in seeds and seedlings of red clover submitted to diesel oil. Iheringia, Série Botânica., 68(2), 195–201. Recuperato da https://isb.emnuvens.com.br/iheringia/article/view/18

Fascicolo

Sezione

Artigos