Adaptações estruturais de sete espécies de plantas para as condições ambientais da área de dunas de Santa Catarina, Brasil
Palavras-chave:
vegetação de dunas, morfologia foliar, anatomia foliar.Resumo
A vegetação litorânea que ocupa a região entre o limite superior da maré alta e as dunas, conhecida como vegetação halófila-psamófila, é caracterizada pelas condições estressantes como altas temperaturas, solos arenosos e bem drenados, ventos e sprays marinhos, condições aparentemente responsáveis pela baixa riqueza específica. Com o objetivo de identificar as características estruturais foliares da vegetação halófila-psamófila associada à colonização e sobrevivência nas condições de influência marinha, estudou-se a morfologia foliar de sete espécies (Acicarpha spathulata R. Br.; Alternanthera maritima (Mart.) A. St.-Hil.; Canavalia rosea (Sw.) DC.; Hydrocotyle bonariensis Lam.; Ipomoea pes-caprae (L.) R.Br.; Blutaparon portulacoides (A. St.-Hil.) Mears. e Remirea maritima Aubl.) ocorrentes na praia do Tabuleiro, Município de Barra Velha, SC. As características analisadas foram: forma de vida, grau de suculência, espessura foliar, área foliar, área foliar específica, peso seco, conteúdo de água, densidade e posição estomática, tipo de mesofilo e espessura dos tecidos da lâmina. As espécies, na sua maioria, possuem folhas suculentas, nanófilas (área foliar pequena), anfiestomáticas, espessas (> 600 μm), apresentam tecido aqüífero, mesofilo dorsiventral com poucos espaços intercelulares. Algumas características foliares são peculiares em algumas espécies como presença de anatomia Kranz e microfilia. As folhas micrófilas de H. bonariensis, C. rosea e I. pes-caprae estão mais orientadas verticalmente em relação à superfície do solo do que as folhas das demais espécies. As características morfológicas acima mencionadas são, aparentemente, estratégias das folhas para reduzir a perda da água, diminuir a ação da intensidade de luz e das temperaturas mais altas durante algumas horas do dia, principalmente nos meses mais quentes do ano, permitindo, assim, uma maior eficiência nos processos fisiológicos.
Downloads
Referências
ALVES DE BRITO, C.J.F.; ALQUINI, Y. 1996. A new method for staining botanical material embebed in glycol methacryate (GMA). Arquivos de Biologia e Tecnologia, Curitiba, v. 39, n. 4, p. 949-950.
ALMEIDA, A.L.; ARAÚJO, D.S.D. 1997. Comunidades Vegetais do Cordão Arenoso Externo da Reserva Ecológica Estadual de Jacarepiá, Saquarema, RJ. Oecologia Brasiliensis, Rio de Janeiro, v. 3, p. 47-63.
ANDRADE, M.A. 1966. Anatomia foliar de algumas plantas freqüentes nas praias arenosas do Estado de São Paulo. Ciência e Cultura, São Paulo, v. 28, n. 11, p. 1297-1305.
BARBOUR, MG. 1992. Life at the Leading Edge: The Beach Plant Syndrome. In: SEELIGER, U. (Ed.): Coastal Plant Communities of Latin America. San Diego: Academic Press. p. 291-307.
BARROS, M. 1960. Las Cyperaceas del Estado de Santa Catarina 181. Sellowia, Itajaí, v. 12, p. 54-63.
BARROS, F. de; MELO, M.M.R.F. de; CHIEA, S.A.C.; KIRIZAWA, M.; WANDERLEY, M. das G.L.; JUNG-MENDAÇOUI, S.L. 1991. Flora fanerogâmica da Ilha do Cardoso: caracterização geral da vegetação e listagem de espécies ocorrentes. São Paulo. v. 1. 84p.
BOEGER, M.R.T.; WISNIEWSKI, C. 2003. Comparação da morfologia foliar de espécies arbóreas de três estádios sucessionais distintos de floresta ombrófila densa (Floresta Atlântica) no sul do Brasil. Revista Brasileira de Botânica, São Paulo, v. 26, n. 1, p. 61-72.
BONGERS, F.; POPMA, J. 1990. Leaf characteristics of the tropical rain forest flora of Los Tuxtlas, Mexico. Botanical Gazette, Chicago, v. 151, n. 3, p. 354-365.
CCJ RIO CUBATÃO JOINVILLE. Climatologia. Disponível em: <http://www.cubataojoinville.org.br>. Acessado em: 2004.
DELUCIA, E.H.; SHENOI, H.D.; NAIDU, S.L.; DAY, T.A. 1991. Photosynthetic symmetry of sun and shade leaves of different orientations. Oecologia, Berlin, v. 87, p. 51-57.
DILLENBURG, L.R.; ROSA, L.M.G.; OLIVEIRA. P.L. de 1986. Anatomia foliar de Blutaparon portulacoides (St. Hil.) Mears (AMARANTHACEAE) sob condições salinas e não salinas. Iheringia, Série Botânica, Porto Alegre, v. 35, p. 151-164.
EHLERINGER, J.R.; WERK, K.S. 1990. Modifications of solarradiation absorption patterns and implications for carbon gain at the leaf level. In: GIVNISH, T. J. (Ed.). On the economy of plant form and function. Cambridge: Cambridge University Press. p. 57-82.
DONG, X.; ZHANG, X. 2000. Special stomatal distribution in Sabina vulgaris in relation to its survival in a desert environment. Trees, Berlin, v. 14, p. 369-375.
FAHMY, G.M. 1997. Of anatomy and its relation to the ecophysiology of some non-succulent desert plants from Egypt. Journal of Arid Environments, London, v. 36, p. 499-525.
FAHN, A.; CUTLER, D.I. 1992. Xerophytes. Berlin: Gebrüder Broentaeger. 176 p.
FEDER, N.; O’BRIEN, T.P. 1968. Plant Microtechnique: some principles and new methods. American Journal of Botany, Columbus, v. 55, n.1, p. 123-142.
GIVNISH, T.J. 1984. Leaf and canopy adaptations in tropical forests. In: MEDINA, E.; MOONEY; H.A.; VASQUES YANES, C. (Ed.). Physiological ecology of plants in the wet tropics. Hague: W. Junk. p. 51-84.
GIVNISH, T.J.; VERMEIJ, G.J. 1976. Sizes and shapes of liane leaves. The American Naturalist, Chicago, v. 110, p. 743-778.
GUSMÃO, E.D. de; SOUZA, J.P. de; SILVA, I.M. de S.; SILVA, L.B. de. 1992. Estudo anátomo-morfológico de dicotiledôneas das dunas de Salvador-Bahia. Borreria cymosa Cham. et Schl. e Chiococca brachiata R. et P. (Rubiaceae). Acta Botanica Brasilica, Rio de Janeiro, v. 6, n. 1 p. 79-98.
JAMES, S.A.; BELL, D.T. 2001. Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globosus ssp. globosus (Myrtaceae). Australian Journal of Botany, Columbus, v. 49, p. 259-269.
JENSEN, W. A. 1962. Botanical Histochemistry, Principles and Practice. San Francisco, W.H. Freeman. 408 p.
JOHANSEN, D.A. 1940. Plant Microtecnique. New York: McGraw Hill. 523 p.
LARCHER, W. 2000. Ecofisiologia Vegetal. São Carlos: RiMa. 531 p.
LEWIS, M.C. 1972. The physiological significance of variation in leaf structure. Science Progress, Oxford, v. 60, p. 25-51.
MEDINA, E.; GARCIA, V.; CUEVAS, E. 1990. Sclerophylly and oligotrophic environments: relationships between leaf, structure, mineral nutrient content, and drought resistance in tropical rain forest of the upper Rio Negro region. Biotropica, Lawrence, v. 22, p. 51-64.
MOTT, K.A.; GIBSON, A.C.; O’LEARY, J.W. 1982. The adaptative significance of amphistomatic leaves. Plant, Cell and Environment, Oxford, v. 5, p. 455-460.
O’BRIEN, T. P.; McCULLY, M. E. 1981. The study of structure principles and selected methods. Melbourne: Termercarphi Pty. 280 p.
PARKHUST, D.F. 1978. The adaptive significance of stomatal occurrence on one or both-surfaces of leaves. Journal of Ecology, Oxford, v. 66, p. 367-383.
PRESS, M.C. 1999. The functional significance of leaf structure: a search for generalizations. New Phytologist, New York, v. 143, p. 213-219.
PYYKKÖ, M. 1979. Morphology and anatomy of leaves from some woody plants in a humid tropical forest of Venezuelan Guayana. Acta Botanica Fennica, Helsinki, v. 112, p. 1-41.
ROTH, I. 1984. Stratification of tropical forest as seen in leaf structure – Tasks for Vegetation Science. Hague: Ed. H. Lieth. 507 p.
SEELIGER, U. 1992. Coastal Foredones of Southern Brazil: physiography, habitats, and Vegetation. In: SEELIGER, U. (Ed.). Coastal Plant Communities of Latin America. San Diego: Academic Press. p. 367-381.
SHANNON, M.C.; GRIEVE, C.M. 1999. Tolerance of vegetable crops to salinity. Scientia Horticulture, v.78, p. 5-38.
SMITH, W.K.; VOLGELMANN, T.C.; DELUCIA, E.H.; BELL, D. T.; SHEPHERD, K.A. 1997. Leaf Form and Photosynthesis: Do leaf structure and orientation interact to regulate internal light and carbon dioxide? Bioscience, Washington, v. 47, p. 785-793.
SMITH, W.K.; BELL, D.T.; SHEPHERD, K.A. 1998. Associations between leaf structure, orientation, and sunlight exposure in five Western Australian communities. American Journal of Botany, Columbus, v. 85, n. 1, p. 56-63.
SOBRADO, M.A.; MEDINA, E. 1980. General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the “bana” vegetation of Amazonas. Oecologia, Berlin, v. 45, p. 341-345.
TAIZ, L.; ZEIGER, E. 2004. Fisiologia Vegetal. Porto Alegre: Artmed. 719 p.
THOMPSON, W.A.; KRIEDEMANN, P.E.; CRAIG, I. E. 1992. Photosynthetic response to light and nutrients in sun-tolerant and shade-tolerant rainforest trees. I. Growth, leaf anatomy and nutrient content. Australian Journal of Plant Physiology, Collingwood, v. 19, p. 1-18.
TURNER, I.M. 994. A quantitative analysis of leaf form in woody plants from the world’s major broadleaved forest types. Journal of Biogeography, Oxford, v. 21, p. 413-419.
TURNER, I.M.; ONG, B.L.; TAN, H.T.W. 1995. Vegetation analysis, leaf structure and nutrient status of a Malaysian heath community. Biotropica, Lawrence, v. 27, n. 1, p. 2-12.
VENDRAMINI, F.; DÍAZ, S.; GURVICH, D.E.; WILSON, P.J.; THOMPSON, K.; HODGSON, J.G. 2002. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytologist, New York, v. 154, p. 147-157.
ZHAO, C.; HUANG, Z. 1981. A preliminary study of xeromorphism of some important xerophytes growing in Tungeli Desert. Acta Botanica Sinica, Beijing, v.23, p. 278-283.
WEBB, L.J. 1959. A physiognomic classification of Australian rain forests. Journal of Ecology, v. 47, p. 551-570.