Physiological and ultra-structural changes in tomato seedlings induced by lead

Authors

  • Caroline Leivas Moraes
  • Patrícia Marini
  • Juliana Aparecida Fernando
  • Dario Munt de Moraes
  • Luis Antônio Suita de Castro
  • Nei Fernandes Lopes

Keywords:

chloroplast, growth, lead acetate, Lycopersicon esculentum

Abstract

The aim of this study was to verify the changes in seed viability, early growth, content of photosynthetic pigments and ultra-structural changes of Lycopersicon esculentum Mill seedlings caused by lead. Seeds were exposed to different concentrations of lead acetate (zero; 0.25; 0.5 and 0.75 mM). Percent germination and seedling emergence decreased as Pb concentration increased. In the same way, root length, dry mass and aerial parts also decreased as concentrations of Pb were increased, where the effect was strong on biomass accumulation in roots. Lead negatively affected chlorophyll contents, carotenoids and leaf area. Ultrastructural analyses demonstrated changes in the thylakoids. In conclusion, the increase in Pb concentration causes reduction in seed viability, early seedling growth, and in the photosynthetic pigment contents, as a consequence of changes in chloroplasts, damaging
growth in tomato plants.

Downloads

Download data is not yet available.

References

Akinci, I.E., Akinci, S. & Yilmas, K. 2010. Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water content. African Journal of Agricultural Research 5: 416-423.

Aravind, P. & Prasad, M.N.V. 2005. Cadmium- Zinc interactions in a hydroponic systemusing Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Brazilian

Journal Plant Physiology 17: 3-5.

Arnon, D.I. 1949. Copper enzymes in isolated chloroplast. Polyphenol oxidases in Beta vulgaris. Plant Physiology 24: 1-14.

Austin, J.R., Frost, E., Vidi, P.A., Kessler, F. & Staehelin, L.A. 2006. Plastoglobules are lipoprotein subcompartments of the chloroplast that are

permanently coupled to thylakoid membranes and contains biosynthetic enzymes. The Plant Cell 18: 1693-1703.

Benavides, M.P., Gallego, S.M. & Tomaro, M.L. 2005. Cadmium toxicity in plants. Brazilian Journal Plant Physiology 17: 21-34.

Brasil. 2009. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília 395p.

Burzyński, M. & Klobus, G. 2004. Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 42: 505-510.

Cenkci, S., Cigerci, I.H., Yildis, M., Ozay, C., Bozdag, A. & Terzi, H. 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental

Botany 67: 467-473.

Chongling, Y., Yetang, H., Shunzhen, F., Chonghua, F., Jixiang, L. & Qin, S. 1998. Effect of cd, pb stress on the activated oxygen scavenging system in tobacco leaves. Chinese Journal Geochemistry 17: 372-378.

Choudhury, S. & Panda, S.K. 2005. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water, Air, Soil Pollution 167: 73-90.

Devil, R., Munjral, N., Gupta, A.K. & Kaur, N. 2007. Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea. Environmental Experimental Botany 61: 167-174.

Djebali, W., Zarrouk, M., Brouquisse, R., EL kahoui, S., Limam, F., Ghorbel, H. & Chaib W. 2005. Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon sculentum) chloroplast membranes. Plant Biology 7: 358-368.

Ekmekc, I.Y., Tanyolac, D. & Ayhan, B. 2009. A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiologiae Plantarum 31: 319-330.

Gaude, N., Brehelin, C. Tischendorf, G. Kessler F. & Dormann P. 2007. Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters.

The Plant Journal 49: 729-739.

Godzik, B. 1993. Heavy metal contents in plants from zinc dumps and reference area. Polish Botanical Studies 5: 113-132.

Gonçalves, J.F., Becker, A.G., Pereira, L.B., Rocha, J.B.T., Cargnelutti, D., Tabaldi, A.L., Battisti, V., Farias, J.G., Fiorenza, A.M., Flores, E.M.M., Nicoloso, F.T. & Schetinger, M.R.C. 2009. Response of Cucumis sativus L. seedlings to Pb exposure. Brazilian Journal Plant Physiology 21: 175-186.

Gratão, P.L., Monteiro, C.C., Rossi, M.L., Martinelli, A.P., Lázaro E.P.P., Medici, L.O., Lea, P.J. & Azevedo, R.A. 2009. Differential ultrastructural changes in tomato hormonal mutants exposed to Cadmium. Environmental and Experimental Botany 67: 387-394.

Haider, S., Kanwal, S., Uddin, F. & Azmat, R. 2006. Phytotoxicity of Pb II changes in chlorophyll absorption spectrum due to toxic metal Pb stress on Phaseolus mungo and Lens culinaris. Journal Biological Sciences

: 2062-2068.

Ischebeck, T., Zbierzak, A. M., Kanwischer, M. & Dormann, P. 2006. A salvage pathway for phytol metabolism in Arabidopsis. Journal Biological

Chemistry 281: 2470-2477.

Kabir, M.M., Iqbal, Z.M., Shafi q, Z.R. & Faroo, Q.I. 2008. Reduction in germination and seedling growth of Thespesia populnea L. caused by lead and cadmium treatments. Pakistan Journal of Botany 40: 2419-2426.

Karnovsky, M.J. 1965. A formaldehyde-glutaraldehyde fi xative of high osmolality for use in electron microscopy. Journal of Cell Biology 27: 137-138.

Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.

Lima, J.E., Carvalho, R.F., Tulmann Neto, A., Figueira, A. & Peres, L.E.P. 2004. Micro Msk: a tomato genotype miniature size, short life cycle and improved in vitro shoot regeneration. Plant Science 167: 753-757.

Maguirre, J.D. 1962. Speed of germination and in selection and evaluation for seedlings emergence and vigor. Crop Science 2: 176-177.

Middleton, E.M. & Teramura, A.H.1993. The role of flavonol glycosides and carotenoids in protecting soybean from UV-B damage. Plant Physiology 103:741-752.

Morsch, V.M., Schetinger, M.R.C., Martins, A.F. & Rocha, J.B.T. 2002. Effects of cadmium, lead, mercury and zinc on δ-aminolevulinic acid dehydratase activity from radish leaves. Biology Plant 45: 85-89.

Nemati, H., Bostani, A.A. & Sharafi , Y. 2013. Effects of soil lead (Pb) concentration on some qualitative and quantitative characteristics of Lycopersicum esculentum. International journal of Agronomy and Plant Production 4: 438-441.

Olmos, E., Kiddle, G., Pellny, T.K., Kumar, S. & Foyer, C.H. 2006. Modulation of plant morphology, root architecture, and cell structure by low vitamin C in Arabidopsis thaliana. Journal of Experimental Botany 57: 1645–1655.

Opeolu, B. O., Adenuga, O. O., Ndakidemi, P. A. & Olujimi, O. O. 2010. Assessment of phytotoxicity potential of lead on tomato (Lycopersicon esculentum L.) planted on contaminated soils. International Journal of Physical Sciences 5: 068-073.

Popinigis, F. 1985. Fisiologia da semente, Pax Editora Gráfi ca e Fotolito Ltda, Brasília. 289 p.

Reynolds, E.S. 1963. Use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17(1): 208p.

Romeiro, S., Lagôa, A.M.A., Furlani, P.R., Abreu, C.A. & Pereira, B.F.F. 2007. Absorção de chumbo e potencial de fitorremediação De Canavalia ensiformes L. Bragantia 66: 327-334.

Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero- Puertas, M.C. & Del Rio, L. A. 2001. Cadmium induced changes in growth and oxidative metabolism of pea plants. Journal Experimental Botany 52: 2115-2126.

Sharma, P. & Dubey, R.S. 2005. Lead toxicity in plants. Brazilian Journal Plant Physiology 17: 35-52.

Verma, S. & Dubey, R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science 164: 645-655.

Vidi, P.A., Kanwischer, M., Baginsky, S., Austin, J.R., Csucs, G., Dormann, P., Kessler, F. & Brehelin, C. 2006. Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. Journal Biological Chemistry 281: 11225-11234.

Wang, C., Wang, X., Tian, Y., Xue, Y., Xu, X., Sui, Y. & Yu, H. 2008. Oxidative stress and potential biomarkers in tomato seedlings subjected to soil lead contamination. Ecotoxicology and Environmental Safety 71: 685-691.

Watson, M.L. 1958. Staining of tissue sections for electron microscopy with heavy metals. Journal of Biophysical and Biochemical Cytology 4: 475p.

Wierzbicka, M. & Antosiewicz, D. 1993. How lead can easily enter de food chain – a study of plant root. Science Total Environment 134: 423-429.

Wierzbicka, M. & Obidzin´ska, J. 1998. The effect of lead on seed imbibition and germination in different plant species. Plant Science 137:155-171.

Published

2014-12-19

How to Cite

Moraes, C. L., Marini, P., Fernando, J. A., Moraes, D. M. de, Castro, L. A. S. de, & Lopes, N. F. (2014). Physiological and ultra-structural changes in tomato seedlings induced by lead. Iheringia. Série Botânica., 69(2), 313–322. Retrieved from https://isb.emnuvens.com.br/iheringia/article/view/95

Issue

Section

Papers