Alterações fisiológicas e ultraestruturais de plântulas de tomate induzidas por chumbo

Autori

  • Caroline Leivas Moraes
  • Patrícia Marini
  • Juliana Aparecida Fernando
  • Dario Munt de Moraes
  • Luis Antônio Suita de Castro
  • Nei Fernandes Lopes

Parole chiave:

acetato de chumbo, cloroplasto, crescimento, Lycopersicon esculentum

Abstract

O objetivo do trabalho foi analisar alterações na germinação das sementes, no crescimento inicial, no conteúdo de pigmentos fotossintéticos e mudanças na ultraestrutura anatômica de plântulas de Lycopersicon esculentum Mill. causadas pelo chumbo (Pb). Sementes de tomate foram submetidas a diferentes concentrações de acetato de chumbo (zero; 0,25; 0,5 e 0,75 mM). A porcentagem de germinação e emergência das plântulas reduziram na maior concentração de Pb. O comprimento e a massa seca da parte aérea e das raízes decresceram com o aumento da concentração do metal, sendo o efeito mais pronunciado no acúmulo de biomassa nas raízes. Os teores de clorofi la, carotenoides e área foliar foram prejudicados pelo Pb. As análises ultraestruturais demonstraram alterações nos tilacoides. Portanto, o Pb ocasiona redução na viabilidade das sementes, no crescimento inicial das plântulas e no conteúdo de pigmentos fotossintéticos, como consequência de alterações nos cloroplastos, produzindo danos no crescimento de plantas de tomate.

Downloads

I dati di download non sono ancora disponibili.

Riferimenti bibliografici

Akinci, I.E., Akinci, S. & Yilmas, K. 2010. Response of tomato (Solanum lycopersicum L.) to lead toxicity: Growth, element uptake, chlorophyll and water content. African Journal of Agricultural Research 5: 416-423.

Aravind, P. & Prasad, M.N.V. 2005. Cadmium- Zinc interactions in a hydroponic systemusing Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology. Brazilian

Journal Plant Physiology 17: 3-5.

Arnon, D.I. 1949. Copper enzymes in isolated chloroplast. Polyphenol oxidases in Beta vulgaris. Plant Physiology 24: 1-14.

Austin, J.R., Frost, E., Vidi, P.A., Kessler, F. & Staehelin, L.A. 2006. Plastoglobules are lipoprotein subcompartments of the chloroplast that are

permanently coupled to thylakoid membranes and contains biosynthetic enzymes. The Plant Cell 18: 1693-1703.

Benavides, M.P., Gallego, S.M. & Tomaro, M.L. 2005. Cadmium toxicity in plants. Brazilian Journal Plant Physiology 17: 21-34.

Brasil. 2009. Ministério da Agricultura, Pecuária e Abastecimento. Regras para análise de sementes. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Brasília 395p.

Burzyński, M. & Klobus, G. 2004. Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 42: 505-510.

Cenkci, S., Cigerci, I.H., Yildis, M., Ozay, C., Bozdag, A. & Terzi, H. 2010. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environmental and Experimental

Botany 67: 467-473.

Chongling, Y., Yetang, H., Shunzhen, F., Chonghua, F., Jixiang, L. & Qin, S. 1998. Effect of cd, pb stress on the activated oxygen scavenging system in tobacco leaves. Chinese Journal Geochemistry 17: 372-378.

Choudhury, S. & Panda, S.K. 2005. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water, Air, Soil Pollution 167: 73-90.

Devil, R., Munjral, N., Gupta, A.K. & Kaur, N. 2007. Cadmium induced changes in carbohydrate status and enzymes of carbohydrate metabolism, glycolysis and pentose phosphate pathway in pea. Environmental Experimental Botany 61: 167-174.

Djebali, W., Zarrouk, M., Brouquisse, R., EL kahoui, S., Limam, F., Ghorbel, H. & Chaib W. 2005. Ultrastructure and lipid alterations induced by cadmium in tomato (Lycopersicon sculentum) chloroplast membranes. Plant Biology 7: 358-368.

Ekmekc, I.Y., Tanyolac, D. & Ayhan, B. 2009. A crop tolerating oxidative stress induced by excess lead: maize. Acta Physiologiae Plantarum 31: 319-330.

Gaude, N., Brehelin, C. Tischendorf, G. Kessler F. & Dormann P. 2007. Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters.

The Plant Journal 49: 729-739.

Godzik, B. 1993. Heavy metal contents in plants from zinc dumps and reference area. Polish Botanical Studies 5: 113-132.

Gonçalves, J.F., Becker, A.G., Pereira, L.B., Rocha, J.B.T., Cargnelutti, D., Tabaldi, A.L., Battisti, V., Farias, J.G., Fiorenza, A.M., Flores, E.M.M., Nicoloso, F.T. & Schetinger, M.R.C. 2009. Response of Cucumis sativus L. seedlings to Pb exposure. Brazilian Journal Plant Physiology 21: 175-186.

Gratão, P.L., Monteiro, C.C., Rossi, M.L., Martinelli, A.P., Lázaro E.P.P., Medici, L.O., Lea, P.J. & Azevedo, R.A. 2009. Differential ultrastructural changes in tomato hormonal mutants exposed to Cadmium. Environmental and Experimental Botany 67: 387-394.

Haider, S., Kanwal, S., Uddin, F. & Azmat, R. 2006. Phytotoxicity of Pb II changes in chlorophyll absorption spectrum due to toxic metal Pb stress on Phaseolus mungo and Lens culinaris. Journal Biological Sciences

: 2062-2068.

Ischebeck, T., Zbierzak, A. M., Kanwischer, M. & Dormann, P. 2006. A salvage pathway for phytol metabolism in Arabidopsis. Journal Biological

Chemistry 281: 2470-2477.

Kabir, M.M., Iqbal, Z.M., Shafi q, Z.R. & Faroo, Q.I. 2008. Reduction in germination and seedling growth of Thespesia populnea L. caused by lead and cadmium treatments. Pakistan Journal of Botany 40: 2419-2426.

Karnovsky, M.J. 1965. A formaldehyde-glutaraldehyde fi xative of high osmolality for use in electron microscopy. Journal of Cell Biology 27: 137-138.

Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148: 350-382.

Lima, J.E., Carvalho, R.F., Tulmann Neto, A., Figueira, A. & Peres, L.E.P. 2004. Micro Msk: a tomato genotype miniature size, short life cycle and improved in vitro shoot regeneration. Plant Science 167: 753-757.

Maguirre, J.D. 1962. Speed of germination and in selection and evaluation for seedlings emergence and vigor. Crop Science 2: 176-177.

Middleton, E.M. & Teramura, A.H.1993. The role of flavonol glycosides and carotenoids in protecting soybean from UV-B damage. Plant Physiology 103:741-752.

Morsch, V.M., Schetinger, M.R.C., Martins, A.F. & Rocha, J.B.T. 2002. Effects of cadmium, lead, mercury and zinc on δ-aminolevulinic acid dehydratase activity from radish leaves. Biology Plant 45: 85-89.

Nemati, H., Bostani, A.A. & Sharafi , Y. 2013. Effects of soil lead (Pb) concentration on some qualitative and quantitative characteristics of Lycopersicum esculentum. International journal of Agronomy and Plant Production 4: 438-441.

Olmos, E., Kiddle, G., Pellny, T.K., Kumar, S. & Foyer, C.H. 2006. Modulation of plant morphology, root architecture, and cell structure by low vitamin C in Arabidopsis thaliana. Journal of Experimental Botany 57: 1645–1655.

Opeolu, B. O., Adenuga, O. O., Ndakidemi, P. A. & Olujimi, O. O. 2010. Assessment of phytotoxicity potential of lead on tomato (Lycopersicon esculentum L.) planted on contaminated soils. International Journal of Physical Sciences 5: 068-073.

Popinigis, F. 1985. Fisiologia da semente, Pax Editora Gráfi ca e Fotolito Ltda, Brasília. 289 p.

Reynolds, E.S. 1963. Use of lead citrate at high pH as an electron-opaque stain in electron microscopy. Journal of Cell Biology 17(1): 208p.

Romeiro, S., Lagôa, A.M.A., Furlani, P.R., Abreu, C.A. & Pereira, B.F.F. 2007. Absorção de chumbo e potencial de fitorremediação De Canavalia ensiformes L. Bragantia 66: 327-334.

Sandalio, L.M., Dalurzo, H.C., Gomez, M., Romero- Puertas, M.C. & Del Rio, L. A. 2001. Cadmium induced changes in growth and oxidative metabolism of pea plants. Journal Experimental Botany 52: 2115-2126.

Sharma, P. & Dubey, R.S. 2005. Lead toxicity in plants. Brazilian Journal Plant Physiology 17: 35-52.

Verma, S. & Dubey, R.S. 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science 164: 645-655.

Vidi, P.A., Kanwischer, M., Baginsky, S., Austin, J.R., Csucs, G., Dormann, P., Kessler, F. & Brehelin, C. 2006. Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles. Journal Biological Chemistry 281: 11225-11234.

Wang, C., Wang, X., Tian, Y., Xue, Y., Xu, X., Sui, Y. & Yu, H. 2008. Oxidative stress and potential biomarkers in tomato seedlings subjected to soil lead contamination. Ecotoxicology and Environmental Safety 71: 685-691.

Watson, M.L. 1958. Staining of tissue sections for electron microscopy with heavy metals. Journal of Biophysical and Biochemical Cytology 4: 475p.

Wierzbicka, M. & Antosiewicz, D. 1993. How lead can easily enter de food chain – a study of plant root. Science Total Environment 134: 423-429.

Wierzbicka, M. & Obidzin´ska, J. 1998. The effect of lead on seed imbibition and germination in different plant species. Plant Science 137:155-171.

Pubblicato

2014-12-19

Come citare

Moraes, C. L., Marini, P., Fernando, J. A., Moraes, D. M. de, Castro, L. A. S. de, & Lopes, N. F. (2014). Alterações fisiológicas e ultraestruturais de plântulas de tomate induzidas por chumbo. Iheringia, Série Botânica., 69(2), 313–322. Recuperato da https://isb.emnuvens.com.br/iheringia/article/view/95

Fascicolo

Sezione

Artigos