Reabsorção foliar de nitrogênio e fósforo em Alcea apterocarpa (Fenzl.) Boiss (Malvaceae) em diferentes tipos de habitats
DOI:
https://doi.org/10.21826/2446-82312022v77e2022022Palavras-chave:
erva endêmica, reutilização de nutrientes, senescênciaResumo
O objetivo do estudo é revelar os padrões de reabsorção foliar de populações de Alcea apterocarpa em diferentes habitats (margens de rios, prados e clareiras florestais) na região central do Mar Negro da Turquia. Determinamos a reabsorção foliar de nitrogênio e fósforo por cálculos de proficiência e produtividade. A eficiência de reabsorção também foi calculada usando o fator de correção de perda de massa (MLCF). Alguns estudos indicaram que MLCF fornece valores de reabsorção imparciais. Sua adequação de recaptação de fósforo (PRP) é moderada e sua adequação de recaptação de nitrogênio (NRP) é completa. As eficiências de recaptação de fósforo (PRE) foram moderadas para todos os habitats considerando MLCF, e PRE em habitat de pastagem estava cheio sem MLCF. As eficiências de recaptação de nitrogênio (NREs) foram moderadas para todos os habitats livres de MLCF, mas faltando NREs para pastagem e desmatamento com uso de MLCF. As relações N/P das folhas verdes de A. apterocarpa foram maiores na margem do rio, enquanto as relações N/P das folhas em senescência foram maiores no habitat de várzea. Apenas, a relação de regressão entre PRP e relação N/P das folhas verdes não foi significativa.
Downloads
Referências
Aerts, R. & Chapin, F.S. 1999. The mineral nutrition of wild plants revisited: a re-evolution of processes and patterns. Advances in Ecological Research 30:1-67.
Ågren, G.I. 2008. Stochiometry and nutrition of plant growth in Natural Communities. Annual Review of Ecology, Evolution and Systematics 39: 153-170.
Allen, S.E., Grimshaw, H.M., Parkinson, J.A., Quarmby, C. & Roberts, J.D. 1976. Chemical Analysis. In Methods in Plant Ecology (S.B. Chapman, ed.). Blackwell Scientific Publications, Oxford, p. 411- 460.
Blanco, J.A., Imbert, J.B. & Castillo, F.J. 2009. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the Pyrenees. Ecological Applications 19: 682-698.
Boerner, R.E.J. 1986. Seasonal nutrient dynamics, nutrient resorption, and mycorrhizal infection intensity of two perennial forest herbs. American Journal of Botany 73: 1249-1257.
Brant, A.N. & Chen, H.Y.N. 2015. Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences 34: 471-486.
Burrows, C.J. 1990. Process of Vegetation Change. Academic Division of Unvin Hyman Ltd., London. 551 p.
Chang, Y., Li, N., Wang, W., Liu, X., Du, F. & Yao, D. 2017. Nutrients resorption and stoichiometry characteristics of different-aged plantations of Larix kaempferi in the Qinling Mountains, Central China. Plos One 12: e0189424.
Côté, B., Fyles, J.W. & Djalilvand, H. 2002. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Annals of Forest Science 59: 275–281.
Covelo, F., Rodriguez, A. & Gallardo, A. 2008. Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercus robur population. Plant Soil 311: 109-119.
Darrah, P.R. 1993. The rhizosphere and plant nutrition: a quantitative approach. Plant and Soil 155(156): 1–20.
De Aldana, B.R.V. & Berendse, F. 1997. Nitrogen-use efficiency in six perennial grasses from contrasting habitats. Functional Ecology 11: 619-626.
Demir, E., Sürmen, B., Özer, H. & Kutbay, H.G. 2017. Ethnobotanical Characteristics of Naturally Growing Plants in Salıpazarı and its Environments (Samsun/Turkey). The Black Sea Journal of Sciences 7(2): 68-78.
Diehl, P., Mazzarino, M.J. & Fontenla, S. 2008. Plant limiting nutrients in Andean-Patagonian woody species: effects of inter annual rainfall variation, soil fertility and mycorrhizal infection. Forest Ecology and Management 255: 2973-2980.
Drenovsky, R.E. & Richards, J.H. 2006. Low leaf N and P resorption contributes to nutrient limitation in two desert shrubs. Plant Ecology 183: 305-314.
Du, Y., Pan, G., Li, L., Hu, Z. & Wang, X. 2011. Leaf N/P ratio and nutrient reuse between dominant species and stands: predicting phosphorus deficiencies in Karst ecosystems, southwestern China. Environmental Earth Sciences 64: 299-309.
Enoki, T. & Kawaguchi, H. 1999.Nitrogen resorption from needles of Pinus thunbergii Parl. growing along a topographic gradient of soil nutrient availability. Ecological Research 14: 1-8.
Finzi, A.F., De Lucia, E.H. & Schlesinger, W.H. 2004. Canopy N and P dynamics of a South eastern US pine forest under elevated CO2. Biogeochemistry 69: 363-378.
Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P. & Aerts, R. 2010. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytologist 186: 879e889.
Gilliam, F.S., Billmyer, J.H., Walter, C.A. & Peterjohn, W.T. 2016. Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species. Atmospheric Environment 146: 261-270.
Güsewell, S. 2004. N/P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243-266.
Hinsinger, P. 1998. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in Agronomy 64: 225–265.
Hoch, W.A., Singsaas, E.L. & McCrow, B.H. 2003. Resorption protection, anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiology 133: 1296-1305.
Huang, J.Y., Yu, H.L., Wang, B., Li, L.H., Xiao, G.J. & Yuan, Z.Y. 2012. Nutrient resorption based on different estimations of five perennial herbaceous species from the grassland in inner Mongolia, China. Journal of Arid Environments 76: 1-8.
Ji, H., Wen, J., Du, B., Sun, N., Berg, B. & Liu, C. 2018. Comparison of the nutrient resorption stoichiometry of Quercus variabilis Blume growing in two sites contrasting in soil phosphorus content. Annals of Forest Science 75(2): 59.
Jiang, D., Geng, Q., Li, Q., Luo, Y., Vogel, J., Shi, Z., Ruan, H. & Xu, X. 2019. Nitrogen and phosphorus resorption in planted forests worldwide. Forests 10(3): 201.
Karavin, N. 2013. Effects of leaf and plant age on specific leaf area in deciduous tree species Quercus cerris L. var. cerris. Bangladesh Journal of Botany 42(2): 301-306.
Kilic, D., Kutbay, H.G., Ozbucak, T. & Huseyinova, R. 2010. Foliar resorption in Quercus petraea subsp. iberica and Arbutus andrachne along an elevation gradient. Annals of Forest Science 67: 213-220.
Kilic, D.D., Kutbay, H.G., Ozbucak, T. & Hüseyinova, R. 2012. Nitrogen and phosphorus resorption in two sympatric deciduous species along an elevation gradient. Revue d’écologie – la Terre et la Vie 67: 409-422.
Killingbeck, K.T., May, J.D. & Nyman, S. 1990. Foliar senescence in an aspen (Populus tremuloides) clone-the response of element resorption to interramet variation and timing of abscission. Canadian Journal of Forest Research 20: 1156–1164.
Killingbeck, K.T. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716-1727.
Kobe, R.K., Lepczyk, C.A. & Iyer, M. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86: 2780–2792.
Kozovits, A.R., Bustamante, M.M.C., Garofalo, C.R., Bucci, S., Franco, A.C., Goldstein, G. & Meinzer, F.C. 2007. Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology 21: 1034-1043.
Kutbay, H.G., Sürmen, B., Kılıç, D.D. & İmamoğlu, A. 2014. The determination of rare species and risk categories in Nebyan Mountain (Samsun/Turkey). Biological Diversity and Conservation 7(2): 73-77.
Lal, C.B., Annapurna, C., Raghubanshi, A.S. & Singh, J.S. 2001. Effect of leaf habit and soil type on nutrient resorption and conservation in woody species of a dry tropical environment. Canadian Journal of Botany 79: 1066-1075.
Li, L.J., Zeng, D.H., Mao, R. & Yu, Z.Y. 2012. Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China. Plant, Soil and Environment 58: 446–451.
Luo, Y., Zhao, X., Zuo, X., Zhang, J., Liu, R. & Wang, S. 2010. Leaf nitrogen resorption pattern along habitats of semi-arid sandy land with different nitrogen status. Polish Journal of Ecology 58: 707-716. Marschner, H. 2011. Marschner’s mineral nutrition of higher plants. Academic Press, USA. 672 p.
Martinez-Sánchez, J.L. 2005. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil. Revista de Biología Tropical 53: 353-359.
McGroddy, M.E., Daufresne, T. & Hedin, L.O. 2004. Scaling of C/N/P stoichiometry in forest worldwide: implications of terrestrial redfield- type ratios. Ecology 85: 2390-240.
Niinemets, U. & Tamm, U. 2005. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology 25: 1001–1014.
Norby, R.J., Long, T.M., Hartz-Rubin, J.S. & O’Neill, E.G. 2000. Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosphere. Plant Soil 224: 15-29.
Pang, D., Wang, G., Li, G., Sun, Y., Liu, Y. & Zhou, J. 2018.Ecological stoichiometric characteristics of two typical plantations in the karst ecosystem of southwestern China. Forests 9: 1-14.
Reich, P.B. & Oleksyn, J. 2004 Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America 101: 11001– 11006.
Ren, H., Xu, Z., Huang, J., Clark, C., Chen, S. & Han, X. 2011. Nitrogen and water addition reduce leaf longevity of steppe species. Annals of Botany 107: 145-155.
Richardson, S.J., Allen, R.B. & Doherty, J.E. 2008. Shifts in leaf N:P ratios during resorption reflect soil P in temperate rainforest. Functional Ecology 22: 738–745.
Salazar, S., Sánchez, L.E., Galindo, P. & Santa-Regina, I. 2011. N and P resorption efficiency and proficiency from leaves under different forest management systems of deciduous woody species. Journal of Engineering and Technology Research 3: 388-397.
See, C.R., Yanai, R.D., Fisk, M.C., Vadeboncoeur, M.A., Quintero, B.A. & Fahey, T.J. 2015. Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest. Ecology 96: 2488–2498.
Sürmen, M., Yavuz, T., Sürmen, B. &, Kutbay, H. 2015. Determination of the population densities of invasive species in meadows and pastures of Samsun. Turkish Journal of Weed Science 18(1): 1-5.
Sürmen, B., Kutbay, H.G., Çakmak, A. & Yılmaz, H. 2016. Comparison of leaf traits (SLA and LMA) on different populations of Alcea apterocarpa. Hacettepe Journal of Biology and Chemistry 44(2): 125-131.
Şahin, G. 2012. Geçmişten Günümüze Türkiye’de Toprak Araştırmaları. Acta Turcica 4(1): 102-118.
Tecimen, H.B., & Makineci, E. 2007. Ağaçlarda besin maddelerinin yeniden taşınması olayı ve ekolojik yönü. SDÜ Orman Fakültesi Dergisi 1: 134-145.
Turkis, S. & Özbucak, T.B. 2010. Foliar resorption and chlorophyll content in leaves of Cistus creticus L. (Cistaceae) along an elevational gradient in Turkey. Acta Botanica Croatica, 69(2): 275-290.
Urgenson, L.A., Reichard, S.H. & Halpern, C.B. 2009. Community and ecosystem consequences of giant knotweed (Polygonum sachalinense) invasion into riparian forests of western Washington, USA. Biological Conservation 142: 1536-1541.
van Heerwaarden, L.M., Toet, S. & Aerts, R. 2003. Current measures of nutrient resorption efficiency lead to a substantial under estimation of real resorption efficiency: facts and solutions. Oikos 101: 664-669.
Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F. & Jackson, R.B. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82: 205–220.
Walker, T.W, & Syers, J.K. 1976. The fate of phosphorus during pedogenesis. Geoderma 15: 1–19.
Wood, T.E., Lawrence, D. & Wells, J.A. 2011. Inter-specific variation in foliar nutrients and resorption of nine canopy tree species in a secondary Neotropical rainforest. Biotropica, 43: 544-551.
Yan, T., Lu, X., Yang, K. & Zhu, J. 2016. Leaf nutrient dynamics and nutrient resorption: a comparison between larch plantations and adjacent secondary forests in Northeast China. Journal of Plant Ecology 9: 165-173.
Yan, T., Zhu, J. & Yang, K. 2017. Leaf nitrogen and phosphorus resorption of woody species in response to climatic conditions and soil nutrients: a meta-analysis. Journal of Forest Research 29: 905–913.
Yilmaz, H., Kutbay, H.G., Kilic, D. & Surmen, B. 2012. Foliar nitrogen and phosphorus resorption in an undisturbed and Pinus pinaster Ait. planted forests in northern Turkey. Revue d’écologie – la Terre et la Vie 69: 39-48.
Yuan, Z.Y., Li, L.H., Han, X.G., Huang, J.H., Jiang, G.M., Wan, S.Q., Zhang, W.H. & Chen, Q.S. 2005. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments 63: 191-202.