Reabsorção foliar de nitrogênio e fósforo em Alcea apterocarpa (Fenzl.) Boiss (Malvaceae) em diferentes tipos de habitats

Autores

DOI:

https://doi.org/10.21826/2446-82312022v77e2022022

Palavras-chave:

erva endêmica, reutilização de nutrientes, senescência

Resumo

O objetivo do estudo é revelar os padrões de reabsorção foliar de populações de Alcea apterocarpa em diferentes habitats (margens de rios, prados e clareiras florestais) na região central do Mar Negro da Turquia. Determinamos a reabsorção foliar de nitrogênio e fósforo por cálculos de proficiência e produtividade. A eficiência de reabsorção também foi calculada usando o fator de correção de perda de massa (MLCF). Alguns estudos indicaram que MLCF fornece valores de reabsorção imparciais. Sua adequação de recaptação de fósforo (PRP) é moderada e sua adequação de recaptação de nitrogênio (NRP) é completa. As eficiências de recaptação de fósforo (PRE) foram moderadas para todos os habitats considerando MLCF, e PRE em habitat de pastagem estava cheio sem MLCF. As eficiências de recaptação de nitrogênio (NREs) foram moderadas para todos os habitats livres de MLCF, mas faltando NREs para pastagem e desmatamento com uso de MLCF. As relações N/P das folhas verdes de A. apterocarpa foram maiores na margem do rio, enquanto as relações N/P das folhas em senescência foram maiores no habitat de várzea. Apenas, a relação de regressão entre PRP e relação N/P das folhas verdes não foi significativa.

Downloads

Não há dados estatísticos.

Biografia do Autor

Burak Sürmen, Karamanoğlu Mehmetbey University

Department of Biology, Kamil Ozdag Faculty of Science.

Hamdi Güray Kutbay, Ondokuz Mayıs University

Department of Biology, Faculty of Science and Arts.

Hakan Yılmaz, Ordu University

Department of Forestry, Akkus Vocational School.

Referências

Aerts, R. & Chapin, F.S. 1999. The mineral nutrition of wild plants revisited: a re-evolution of processes and patterns. Advances in Ecological Research 30:1-67.

Ågren, G.I. 2008. Stochiometry and nutrition of plant growth in Natural Communities. Annual Review of Ecology, Evolution and Systematics 39: 153-170.

Allen, S.E., Grimshaw, H.M., Parkinson, J.A., Quarmby, C. & Roberts, J.D. 1976. Chemical Analysis. In Methods in Plant Ecology (S.B. Chapman, ed.). Blackwell Scientific Publications, Oxford, p. 411- 460.

Blanco, J.A., Imbert, J.B. & Castillo, F.J. 2009. Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the Pyrenees. Ecological Applications 19: 682-698.

Boerner, R.E.J. 1986. Seasonal nutrient dynamics, nutrient resorption, and mycorrhizal infection intensity of two perennial forest herbs. American Journal of Botany 73: 1249-1257.

Brant, A.N. & Chen, H.Y.N. 2015. Patterns and mechanisms of nutrient resorption in plants. Critical Reviews in Plant Sciences 34: 471-486.

Burrows, C.J. 1990. Process of Vegetation Change. Academic Division of Unvin Hyman Ltd., London. 551 p.

Chang, Y., Li, N., Wang, W., Liu, X., Du, F. & Yao, D. 2017. Nutrients resorption and stoichiometry characteristics of different-aged plantations of Larix kaempferi in the Qinling Mountains, Central China. Plos One 12: e0189424.

Côté, B., Fyles, J.W. & Djalilvand, H. 2002. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Annals of Forest Science 59: 275–281.

Covelo, F., Rodriguez, A. & Gallardo, A. 2008. Spatial pattern and scale of leaf N and P resorption efficiency and proficiency in a Quercus robur population. Plant Soil 311: 109-119.

Darrah, P.R. 1993. The rhizosphere and plant nutrition: a quantitative approach. Plant and Soil 155(156): 1–20.

De Aldana, B.R.V. & Berendse, F. 1997. Nitrogen-use efficiency in six perennial grasses from contrasting habitats. Functional Ecology 11: 619-626.

Demir, E., Sürmen, B., Özer, H. & Kutbay, H.G. 2017. Ethnobotanical Characteristics of Naturally Growing Plants in Salıpazarı and its Environments (Samsun/Turkey). The Black Sea Journal of Sciences 7(2): 68-78.

Diehl, P., Mazzarino, M.J. & Fontenla, S. 2008. Plant limiting nutrients in Andean-Patagonian woody species: effects of inter annual rainfall variation, soil fertility and mycorrhizal infection. Forest Ecology and Management 255: 2973-2980.

Drenovsky, R.E. & Richards, J.H. 2006. Low leaf N and P resorption contributes to nutrient limitation in two desert shrubs. Plant Ecology 183: 305-314.

Du, Y., Pan, G., Li, L., Hu, Z. & Wang, X. 2011. Leaf N/P ratio and nutrient reuse between dominant species and stands: predicting phosphorus deficiencies in Karst ecosystems, southwestern China. Environmental Earth Sciences 64: 299-309.

Enoki, T. & Kawaguchi, H. 1999.Nitrogen resorption from needles of Pinus thunbergii Parl. growing along a topographic gradient of soil nutrient availability. Ecological Research 14: 1-8.

Finzi, A.F., De Lucia, E.H. & Schlesinger, W.H. 2004. Canopy N and P dynamics of a South eastern US pine forest under elevated CO2. Biogeochemistry 69: 363-378.

Freschet, G.T., Cornelissen, J.H.C., van Logtestijn, R.S.P. & Aerts, R. 2010. Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytologist 186: 879e889.

Gilliam, F.S., Billmyer, J.H., Walter, C.A. & Peterjohn, W.T. 2016. Effects of excess nitrogen on biogeochemistry of a temperate hardwood forest: Evidence of nutrient redistribution by a forest understory species. Atmospheric Environment 146: 261-270.

Güsewell, S. 2004. N/P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243-266.

Hinsinger, P. 1998. How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in Agronomy 64: 225–265.

Hoch, W.A., Singsaas, E.L. & McCrow, B.H. 2003. Resorption protection, anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiology 133: 1296-1305.

Huang, J.Y., Yu, H.L., Wang, B., Li, L.H., Xiao, G.J. & Yuan, Z.Y. 2012. Nutrient resorption based on different estimations of five perennial herbaceous species from the grassland in inner Mongolia, China. Journal of Arid Environments 76: 1-8.

Ji, H., Wen, J., Du, B., Sun, N., Berg, B. & Liu, C. 2018. Comparison of the nutrient resorption stoichiometry of Quercus variabilis Blume growing in two sites contrasting in soil phosphorus content. Annals of Forest Science 75(2): 59.

Jiang, D., Geng, Q., Li, Q., Luo, Y., Vogel, J., Shi, Z., Ruan, H. & Xu, X. 2019. Nitrogen and phosphorus resorption in planted forests worldwide. Forests 10(3): 201.

Karavin, N. 2013. Effects of leaf and plant age on specific leaf area in deciduous tree species Quercus cerris L. var. cerris. Bangladesh Journal of Botany 42(2): 301-306.

Kilic, D., Kutbay, H.G., Ozbucak, T. & Huseyinova, R. 2010. Foliar resorption in Quercus petraea subsp. iberica and Arbutus andrachne along an elevation gradient. Annals of Forest Science 67: 213-220.

Kilic, D.D., Kutbay, H.G., Ozbucak, T. & Hüseyinova, R. 2012. Nitrogen and phosphorus resorption in two sympatric deciduous species along an elevation gradient. Revue d’écologie – la Terre et la Vie 67: 409-422.

Killingbeck, K.T., May, J.D. & Nyman, S. 1990. Foliar senescence in an aspen (Populus tremuloides) clone-the response of element resorption to interramet variation and timing of abscission. Canadian Journal of Forest Research 20: 1156–1164.

Killingbeck, K.T. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716-1727.

Kobe, R.K., Lepczyk, C.A. & Iyer, M. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86: 2780–2792.

Kozovits, A.R., Bustamante, M.M.C., Garofalo, C.R., Bucci, S., Franco, A.C., Goldstein, G. & Meinzer, F.C. 2007. Nutrient resorption and patterns of litter production and decomposition in a Neotropical Savanna. Functional Ecology 21: 1034-1043.

Kutbay, H.G., Sürmen, B., Kılıç, D.D. & İmamoğlu, A. 2014. The determination of rare species and risk categories in Nebyan Mountain (Samsun/Turkey). Biological Diversity and Conservation 7(2): 73-77.

Lal, C.B., Annapurna, C., Raghubanshi, A.S. & Singh, J.S. 2001. Effect of leaf habit and soil type on nutrient resorption and conservation in woody species of a dry tropical environment. Canadian Journal of Botany 79: 1066-1075.

Li, L.J., Zeng, D.H., Mao, R. & Yu, Z.Y. 2012. Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China. Plant, Soil and Environment 58: 446–451.

Luo, Y., Zhao, X., Zuo, X., Zhang, J., Liu, R. & Wang, S. 2010. Leaf nitrogen resorption pattern along habitats of semi-arid sandy land with different nitrogen status. Polish Journal of Ecology 58: 707-716. Marschner, H. 2011. Marschner’s mineral nutrition of higher plants. Academic Press, USA. 672 p.

Martinez-Sánchez, J.L. 2005. Nitrogen and phosphorus resorption in a neotropical rain forest of a nutrient-rich soil. Revista de Biología Tropical 53: 353-359.

McGroddy, M.E., Daufresne, T. & Hedin, L.O. 2004. Scaling of C/N/P stoichiometry in forest worldwide: implications of terrestrial redfield- type ratios. Ecology 85: 2390-240.

Niinemets, U. & Tamm, U. 2005. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands. Tree Physiology 25: 1001–1014.

Norby, R.J., Long, T.M., Hartz-Rubin, J.S. & O’Neill, E.G. 2000. Nitrogen resorption in senescing tree leaves in a warmer, CO2-enriched atmosphere. Plant Soil 224: 15-29.

Pang, D., Wang, G., Li, G., Sun, Y., Liu, Y. & Zhou, J. 2018.Ecological stoichiometric characteristics of two typical plantations in the karst ecosystem of southwestern China. Forests 9: 1-14.

Reich, P.B. & Oleksyn, J. 2004 Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America 101: 11001– 11006.

Ren, H., Xu, Z., Huang, J., Clark, C., Chen, S. & Han, X. 2011. Nitrogen and water addition reduce leaf longevity of steppe species. Annals of Botany 107: 145-155.

Richardson, S.J., Allen, R.B. & Doherty, J.E. 2008. Shifts in leaf N:P ratios during resorption reflect soil P in temperate rainforest. Functional Ecology 22: 738–745.

Salazar, S., Sánchez, L.E., Galindo, P. & Santa-Regina, I. 2011. N and P resorption efficiency and proficiency from leaves under different forest management systems of deciduous woody species. Journal of Engineering and Technology Research 3: 388-397.

See, C.R., Yanai, R.D., Fisk, M.C., Vadeboncoeur, M.A., Quintero, B.A. & Fahey, T.J. 2015. Soil nitrogen affects phosphorus recycling: foliar resorption and plant-soil feedbacks in a northern hardwood forest. Ecology 96: 2488–2498.

Sürmen, M., Yavuz, T., Sürmen, B. &, Kutbay, H. 2015. Determination of the population densities of invasive species in meadows and pastures of Samsun. Turkish Journal of Weed Science 18(1): 1-5.

Sürmen, B., Kutbay, H.G., Çakmak, A. & Yılmaz, H. 2016. Comparison of leaf traits (SLA and LMA) on different populations of Alcea apterocarpa. Hacettepe Journal of Biology and Chemistry 44(2): 125-131.

Şahin, G. 2012. Geçmişten Günümüze Türkiye’de Toprak Araştırmaları. Acta Turcica 4(1): 102-118.

Tecimen, H.B., & Makineci, E. 2007. Ağaçlarda besin maddelerinin yeniden taşınması olayı ve ekolojik yönü. SDÜ Orman Fakültesi Dergisi 1: 134-145.

Turkis, S. & Özbucak, T.B. 2010. Foliar resorption and chlorophyll content in leaves of Cistus creticus L. (Cistaceae) along an elevational gradient in Turkey. Acta Botanica Croatica, 69(2): 275-290.

Urgenson, L.A., Reichard, S.H. & Halpern, C.B. 2009. Community and ecosystem consequences of giant knotweed (Polygonum sachalinense) invasion into riparian forests of western Washington, USA. Biological Conservation 142: 1536-1541.

van Heerwaarden, L.M., Toet, S. & Aerts, R. 2003. Current measures of nutrient resorption efficiency lead to a substantial under estimation of real resorption efficiency: facts and solutions. Oikos 101: 664-669.

Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F. & Jackson, R.B. 2012. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs 82: 205–220.

Walker, T.W, & Syers, J.K. 1976. The fate of phosphorus during pedogenesis. Geoderma 15: 1–19.

Wood, T.E., Lawrence, D. & Wells, J.A. 2011. Inter-specific variation in foliar nutrients and resorption of nine canopy tree species in a secondary Neotropical rainforest. Biotropica, 43: 544-551.

Yan, T., Lu, X., Yang, K. & Zhu, J. 2016. Leaf nutrient dynamics and nutrient resorption: a comparison between larch plantations and adjacent secondary forests in Northeast China. Journal of Plant Ecology 9: 165-173.

Yan, T., Zhu, J. & Yang, K. 2017. Leaf nitrogen and phosphorus resorption of woody species in response to climatic conditions and soil nutrients: a meta-analysis. Journal of Forest Research 29: 905–913.

Yilmaz, H., Kutbay, H.G., Kilic, D. & Surmen, B. 2012. Foliar nitrogen and phosphorus resorption in an undisturbed and Pinus pinaster Ait. planted forests in northern Turkey. Revue d’écologie – la Terre et la Vie 69: 39-48.

Yuan, Z.Y., Li, L.H., Han, X.G., Huang, J.H., Jiang, G.M., Wan, S.Q., Zhang, W.H. & Chen, Q.S. 2005. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments 63: 191-202.

Downloads

Publicado

2022-11-16

Como Citar

Sürmen, B., Kutbay, H. G., & Yılmaz, H. (2022). Reabsorção foliar de nitrogênio e fósforo em Alcea apterocarpa (Fenzl.) Boiss (Malvaceae) em diferentes tipos de habitats. Iheringia, Série Botânica., 77. https://doi.org/10.21826/2446-82312022v77e2022022

Edição

Seção

Artigos