Effect of the fipronil insecticide on physiological and morphoanatomical parameters in Cerrado species

Authors

  • Lícia Priscila Nogueira Azevedo Universidade Federal do Tocantins https://orcid.org/0000-0001-7690-0003
  • Tiago Borges Rocha Banco da Amazônia SA.
  • Flavia Barreira Gonçalves Universidade Federal do Tocantins
  • Ana Beatriz Nunes Ribeiro Universidade Federal do Tocantins
  • Victorina Bispo Aires Universidade Federal de Viçosa
  • Eduardo Andrea Lemus Erasmo Universidade Federal do Tocantins
  • Kellen Lagares Ferreira Silva Universidade Federal do Tocantins https://orcid.org/0000-0002-1810-4540

DOI:

https://doi.org/10.21826/2446-82312024v79e20241112

Keywords:

agrotoxic, cagaita, phytotoxicity

Abstract

The increase in the use of pesticides in the Cerrado region has been influenced by the expansion of agricultural production, driven by agribusiness. These products can reach non-target areas through drift, becoming a significant threat to numerous native species with high economic, ecological, and social potential. In Brazil, fipronil is among the most commercialized insecticides for controlling pests resistant to other pesticides. Therefore, the objective was to identify the physiological and morpho-anatomical responses of Eugenia dysenterica when exposed to fipronil to assess its potential as a bioindicator species for areas affected by this insecticide. Phytotoxicity, physiological, and morpho-anatomical characteristics of E. dysenterica were analyzed at the following concentrations of fipronil: 260, 520, and 1040 g.a.i./ha, respectively. The individuals showed sensitivity to the insecticide with phytotoxicity symptoms, reductions in photosynthetic rates, stomatal conductance, and transpiration, as well as anatomical modifications in tissues (changes in cell shape and coloration of contents in the secretory canal, a decrease in the thickness of epidermal tissues, and palisade parenchyma). These changes can serve as an indicator of fipronil presence in these plants and open the perspective for the use of E. dysenterica as a biomonitor of environments contaminated by this insecticide.

Downloads

Download data is not yet available.

References

Adalberto, P. R., Massabni, A. C., Goulart, A. J., Monti, R. & Lacava, P. M. 2004. Efeito do fósforo na captação de minerais e pigmentação de Azolla carolinian Willd. (Azollaceae). Brazilian Journal of Botany 27(3): 581-585.

Aguiar, T. V., Sant’anna-Santos, B. F., Azevedo, A. A. & Ferreira, R. S. 2007. Anati Quanti: software de análises quantitativas para estudos em anatomia vegetal. Planta daninha 25(4): 649-659.

Ahemad, M. & Khan, M. S. 2011. Comparative study of the growth parameters of legumes grown in fipronil-stressed soils. Eur Asian Journal of Bio Sciences 5:29-36

Andrei, E. (Coord.). 2005. Compêndio de defensivos agrícolas. Andrei, São Paulo. 7. ed. 1141p.

Azevedo, C. F., Bruno, R. L. A. & Quirino, Z. G. M. 2014. Anatomia de plântulas de erva doce (Foeniculum vulgare Mill.) sob o efeito de inseticida. Revista Biociências 20(1): 63-71.

Belayneh, Y. T. 1998. Amendment III to the USAID/Madagascar supplemental environmental assessment for locust control program: Options for including fipronil as an anti-locust insecticide. Unpublished report. USAID, Washington DC.

Bobe, A., Cooper, J. F. & Coste, C. M. 1997. Factors Influencing the adsorption of fipronil on soils. Journal of Agriculture and Food Chemistry 45: 4861- 4865.

Boldt, T. S. & Jacobsen, C. S. 1998. Different toxic effects of the sulfonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads isolated from an agricultural soil. FEMS Microbiology Letters 161(1): 29-35.

De Figueiredo Aquino, S. M., de Almeida, J. R., Cunha, R. R. R. S.

B. & Lins, G. A. 2011. Bioindicadores vegetais: uma alternativa para monitorar a poluição atmosférica. Revista Internacional de Ciências 1(1): 77-94.

Frans, R. E. 1972. Measuring plant responses. In: Wilkinson RE, editor. Research methods in weed science. Australian, Southern Weed Science Society, p. 28-41.

Ferreira, D. F. 2018. SisVar® (Software estatístico): Sistema de análise de variância para dados balanceados. Versão 5.7. Lavras, DEX/UFLA. Gerlach, D. 1984. Botanische Mikrotechnik: Eine Einführung. Georg Thieme, Stuttgart. 3. ed. p. 311.

Haupt, A. W. 1930. A gelatin fixative for paraffin sections. Stain Technology 5(3): 97-98.

Ignácio, N. F., Américo, J. H. P., Silva, M. A., Carraschi, S. P., Ikefuti, C. V., Cruz, C. & Machado-Neto, J. G. 2014. Classificação ecotoxicológica do inseticida Fipronil para o peixe de espécie pacu. In: 6º Congresso Nacional de Meio Ambiente de Poços de Caldas. p. 1-7.

Jorge, N., Moreno, D. M. & Bertanha, B. J. 2010. Eugenia dysenterica DC: actividad antioxidante, perfil de ácidos grasos y determinación de tocoferoles. Revista Chilena de Nutrición 37(2): 208-214.

Lucadamo, L., Corapi, A. & Gallo, L. 2018. Evaluation of glyphosate drift and anthropogenic atmospheric trace elements contamination by means of lichen transplants in a southern Italian agricultural district. Air Quality, Atmosphere & Health 11(3): 325-339.

Mansfield, Terry A., and Martin R. McAinsh. 1995. Hormones as regulators of water balance. Plant hormones: physiology, biochemistry and molecular biology. Dordrecht, Springer Netherlands, 1995. p. 598-616.

Martinotto, C., Paiva, R., Soares, F. P., Santos, B. R. & Nogueira, R. C. 2008. Cagaiteira (Eugenia dysenterica DC.). Boletim Técnico 78: 1-21

Oliveira, M. E. S., Pantoja, L.; Duarte, W. F., Collela, C. F., Valarelli, L. T., Schwan, R. F. & Dias, D. R. 2011. Fruit wine produced from cagaita (Eugenia dysenterica DC) by both free and immobilised yeast cell fermentation. Food Research International 44(7): 2391-2400.

Palhares, D. 2003. Caracterização farmacognóstica das folhas de Eugenia dysenterica DC (Myrtaceae Jussieu). Lecta-USF 21(1/2): 29-36.

Pereira, M. R. R., de Souza, G. S. F., Fonseca, E. D. & Martins, D. 2015. Subdoses de glyphosate no desenvolvimento de espécies arbóreas nativas. Bioscience Journal 31(2): 326-332.

Prestes, R. M. & Vincenci, K. L. 2019. Bioindicadores como avaliação de impacto ambiental. Brazilian Journal of Animal and Environmental Research 2(4): 1473-1493.

Salamandane, A. R. 2015. Toxicidade de dimetoato e mancozeb a Brassica rapa L. Toxicity of dimethoate and mancozeb to Brassica rapa L. Ambiência 11(3): 603-610.

Sartorelli, P. A. R. & Campos Filho, E. M. 2017. Guia de plantas da regeneração natural do Cerrado e da Mata Atlântica. Agroicone, São Paulo. 140p.

Scariot, A. & Ribeiro, J. F. 2015. Boas práticas de manejo para o extrativismo sustentável da Cagaita. Embrapa Recursos Genéticos e Biotecnologia, Brasília. 72p.

Rai, P. K. 2016. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicology and environmental safety 129: 120-136.

Ronen, R. & Galun, M. 1984. Pigment extraction from lichens with dimethyl sulfoxide (DMSO) and estimation of chlorophyll degradation. Environmental and Experimental Botany 24(3): 239-245.

Vieira, P. M., Veronezi, E., Silva, C. R. & Chen-Chen, L. 2012. Detection of genotoxic, cytotoxic, and protective activities of Eugenia dysenterica DC. (Myrtaceae) in mice. Journal of Medicinal Food 15(6): 563-567.

Wani, P. A., Zaidi, A., Khan, A. A. & Khan, M. S. 2005. Effect of phorate on phosphate solubilization and indole acetic acid releasing potentials of rhizospheric microorganisms. Annals of Plant Protection Sciences, 13: 139–144.

Wellburn, A. R. 1994. The spectral determination of chlorophylls a and b, as weel as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144: 307-313.

Published

2024-07-02

How to Cite

Azevedo, L. P. N., Rocha, T. B., Gonçalves, F. B., Ribeiro, A. B. N., Aires, V. B., Erasmo, E. A. L., & Silva, K. L. F. (2024). Effect of the fipronil insecticide on physiological and morphoanatomical parameters in Cerrado species. Iheringia. Série Botânica., 79. https://doi.org/10.21826/2446-82312024v79e20241112

Issue

Section

Papers