Comparative leaf architecture of Hedychium coronarium J. Koenig (Zingiberaceae) and Typha domingensis Pers (Typhaceae)
Keywords:
leaf morphology, foliar orientation, foliar structure, taboa, lirio-do-brejo.Abstract
Different strategies in light interception by plants might dictate structural leaf variation. The aim of this study was to compare the morphoanatomy of two species, Hedychium coronarium and Typha domingensis, which cohabit in places with high light and overflowed soil. All leaves of T. domingensis are vertically oriented, while only the youngest leaves of H. coronarium are vertical. The leaf characteristics analyzed were: leaf area, dry weight, total length, width and thickness of the tip, mid and base regions, stomata density, and angle of insertion. The vertical orientation, amphistomy, symmetrical, mesophyll, and lacunar system allow leaves of T. domingensis to have great areas. Leaves of H. coronarium have higher stomata number in the abaxial face, hypoderm, assimetrical mesophyll and folding of the margins, which, apparentely, are preventive measures against photoinibition. The success of colonization and rapid proliferation of these species are due, partialy, to their foliar architecture.
Downloads
References
DELUCIA, E.H.; SHENOI, H.D.; NAIDU, S.L.; DAY, T.A. 1991. Photosynthetic symmetry of sun and shade leaves of different orientations. Oecologia, v. 87, p. 51-57.
EHLERINGER, J.R.; WERK, K.S. 1986. Modifications of solar radiation absorption patterns and implications for carbon gain at the leaf level. In: GIVNISH, T.J. On the economy of plant form and function. Cambridge: Cambridge University Press. p. 57-82.
FALSTER, D.S.; WESTOBY, M. 2003. Leaf size and angle vary widely across species: what consequences for light interception? New Phytologist, v.158, p. 509-525.
FEDER, N.; O’BRIEN, T.P. 1968. Plant microtechnique: some principles and new methods. American Journal of Botany, v. 55, n. 1, p. 123-142.
JOHANSEN, D.A. 1940. Plant micro technique. New York, McGraw-Hill Book Co. Inc. 523p.
JOLY, C.A.; BRANDLE, R. 1995. Fermentation and adenylate metabolism of Hedychium coronarium J. G. Koenig (Zingiberaceae) and Acorus calamus L. (Araceae) under hypoxia and anoxia. Functional Ecology, v. 9, n. 3, p. 505-510.
KAUL, R.B. 1971. Diaphragms and aerenchyma in Scirpus validus. American Journal of Botany, v. 58, p. 808-816.
KAUL, R.B. 1974. Ontogeny of foliar diaphragms in Typha latifolia. American Journal of Botany, v. 61, p. 318-323.
KRAUS, J.E.; ARDUIN, M. 1997. Manual básico de métodos em morfologia vegetal. Seropédica: EDUR. 198 p.
LORENZI, H. 2000. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. 3. ed. Nova Odessa: Instituto Plantarium. 608 p.
MOTT, K.A.; GIBSON, A.C.; O’LEARY, J.W. 19 82. The adaptive significance of amphistomatic leaves. Plant, Cell and Environment, v. 5, p. 455-460.
MOTT, K.A.; MICHAELSON, O. 1991. Amphistomy as an adaptation to high light intensity in Ambrosia cordifolia (Compositae). American Journal of Botany, v. 78, n. 1, p. 76-79.
MYERS, D.A.; JORDAN, D.N.; VOGELMANN, T.C. 1997. Inclination of sun and shade leaves influences chloroplast light harvesting and utilization. Physiologia Plantarum, v. 99, p. 395-404.
POULSON, M.E.; DELUCIA, E.H. 1993. Photosynthetic and structural acclimation to light direction in vertical leaves of Silphium terebinthinaceum. Oecologia, v. 95, p. 393-400.
PRESS, M.C. 1999. The functional significance of leaf structure: a search for generalizations. New Phytologist, v. 143, p. 213-219.
ROTH, I. 1984. Stratification of tropical forest as seen in leaf structure. Tasks for Vegetation Science. Lancaster: Ed. Lieth. 507 p.
ROWLATT, U.; MORSHEAD, H. 1992. Architecture of the leaf of the greater red mace, Typha latifolia L. Botanical Journal of the Linnean Society, v. 110, p. 161-170.
SIMEPAR. Disponível em: <http://www.simepar.br>. Acesso em: jun. 2004.
SCULTHORPE, C.D. 1985. The biology of aquatic vascular plants. Londres: Edward Arnold. 610p.
SMITH, M.; ULLBERG, D. 1989. Effect of leaf angle and orientation on photosynthesis and water relations in Silphium terebinthinaceum. American Journal of Botany, v. 76, n. 12, p. 1714-1719.
SMITH, W.K.; VOLGEMANN, T.C.; DELUCIA, E.H.; BELL, D.T.; SHEPERD, K.A. 1997. Leaf form and photosynthesis: do leaf structure and orientation interact to regulate internal light and carbon dioxide? BioScience, v. 47, n. 11, p. 785-793.
SMITH, W.K.; BELL, D.T.; SHEPHERD, K.A. 1998. Associations between leaf structure, orientation and sunlight exposure in five western Australian Communities. American Journal of Botany, v. 85, n. 1, p. 56-63.
STRAUSS-DEBENEDETTI, S.; BERLYN, G.P. 1994. Leaf anatomical responses to light in five tropical Moraceae of different successional status. American Journal of Botany, v. 81, p. 1582-1591.
THOMPSON, J.; PROCTOR, J.; VIANA, V.; MILLIKEN, W.; RATTER, J.A.; SCOTT, D.A. 1992. Ecological studies on a lowland evergreen rain forest on Maracá Island, Roraima, Brazil. I. Physical environment, forest structure and leaf chemistry. Journal of Ecology, v. 80, p. 689-703.
TOMLINSON, P.B. 1967. Anatomy of the Monocotyledons. Oxford: Oxford University Press. v. 3: Commelinales – Zingiberales. p. 341-359.
VOGELMANN, T.C. 1989. Penetration of light into plants. Photochemistry and Photobiology, v. 50, p. 895-902.
VOGELMANN, T.C.; MARTIN, G. 1993. The function significance of palisade tissue: penetration of directional versus diffuse light. Plant, cell and environment, v. 16, p. 65-72.
VOGELMANN, T.C.; BORNMAN, J.F.; YATES, D.J. 1996. Focusing of light by leaf epidermal cells. Physiologia Plantarum, v. 98, p. 43-56.