Structural changes in needle epicuticular waxes of Balkan Abies species in relation to natural weathering
DOI :
https://doi.org/10.21826/2446-82312024v79e20241246Mots-clés :
Amorphous crusts, Firs, Granules, Micromorphology, TubulesRésumé
This study represents the first survey of the structural changes of epicuticular waxes of Abies alba, A. x borisii-regis and A. cephalonica in relation to natural weathering. In all three studied species, epicuticular wax on the adaxial side of the needles was in the form of granules, whose amount increased with age of needles, so they were most prominent on the oldest needles. The main wax crystalloids on the abaxial needle surfaces were tubules with a tendency to concentrate within the stomatal complexes and between them in the stomatal rows. As the tubules aged they generally tended to agglomerate and fuse, forming amorphous wax crusts. Although we did not find differences in the micromorphology types of epicuticular wax among the examined species, both the tendency of amount of granules to increase and the degree of degradation of tubules into amorphous crusts as the result of natural ageing process were well-documented.
Téléchargements
Références
Amelunxen, F., Morgenroth, K. & Picksack, T. 1967. Untersuchungen an der Epidermis mit dem Stereoscan-Elektronenmikroskop. Pflanzenphysiologie 57:79-95.
Bačić, T. & Popović, Ž. 1998. Preliminary report on epicuticular wax surface condition on stomata of Abies alba Mill. needles from Risnjak National park in Croatia. Acta Biologica Cracoviensia: series botanica 40:25-31.
Bačić, T., Krstin, Lj., Roša, J. & Popović, Ž. 2005. Epicuticular wax on stomata of damaged silver firs trees (Abies alba Mill.). Acta Societatis Botanicorum Poloniae 2:159-166.
Baker, E. A. 1982. Chemistry and morphology of plant epicuticular waxes. In The plant cuticle (D. F. Cutler, K. L. Alvin & C. E. Price, eds.). Academic Press, London, p. 139-166.
Barthlott, W., Neinhuis, C., Cutler, D., Ditsch, F., Meusel, I., Theisen, I. & Wilhelmi, H. 1998. Classification and terminology of plant epicuticular waxes. Botanical Journal of the Linnean Society 126:237- 260.
Barthlott, W., Theisen, I., Borsch, T. & Neinhuis, C. 2003. Epicuticular waxes and vascular plant systematics: integrating micromorphological and chemical data. In Deep morphology. Toward a renaissance of morphology in plant systematics (T. F. Stuessy, V. Meyer & E. Hörandl, eds.). Ganter Verlag, Ruggell, p. 189-206.
Bermadinger, E., Grill, D. & Golob, P. 1987. The different influence of magnesite emissions on the surface waxes of Norway spruce and silver fir. Canadian Journal of Botany 66:125-129.
Bianchi, G. 1995. Plant waxes. In Waxes: chemistry, molecular biology and functions (R. J. Hamilton, ed.). Oily, Dundee, Scotland, p. 177–222.
Cape, J. N. & Fowler, D. 1981. Changes in epicuticular wax of Pinus sylvestris exposed to polluted air. Silva Fennica 15:1926-1997.
Chater, A. 1993. Abies. In Horn Eumpaea (T. G. Tutin, V. H. Hepwood, N. A. Barges, D. M. Moore, D. H. Valentine, S. M. Walters & D. A. Webb, eds.). Cambridge University Press, Cambridge, p. 38.
Crossley, A. & Fowler, D. 1986. The weathering of Scots pine epicuticular wax in polluted and clean air. New Phytologist 103:207-218.
Ensikat, H. J., Boese, M., Mader, W., Barthlott, W. & Koch, K. 2006. Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. Chemistry and Physics of Lipids 144:45-59.
Hallam, N. D. 1967. An Electron Microscope Study of the Leaf Waxes of the Genus Eucalyptus l’heritier, Ph.D., University of Melbourne. Hallam, N. D. 1970. Growth and regeneration of waxes on the leaves of Eucalyptus. Planta 93:257-268.
Hanover, J. W. & Reicosky, D. A. 1971. Surface wax deposits on foliage of Picea pungens and other conifers. American Journal of Botany 58:681-687.
Hennig, S., Barthlott, W., Meusel, I. & Theisen, I. 1994. Mikromorphologie der Epicuticularwachse und die Systematik der Magnoliidae. Ranunculidae und Hamamelididae. Tropische und Subtropische Pflanzenwelt 90:5-60.
Herbin, G. A. & Sharma, K. 1969. Studies on plant cuticular waxes. V. The wax coatings of pine needles: a taxonomic survey. Phytochemistry 8:151-160.
Huttunen, S. & Laine, K. 1983. Effects of airborne pollutants on the surface wax structure of Pinus sytvestris needles. Annales Botanici Fennici 20:79-86.
Ivănescu, L., Toma, C., Zamfirache, M. M. & Galeş, R. C. 2008. Some aspects concerning the interaction between needle surfaces and solid industrial pollutants. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii (Life Sciences Series) 18:275-280.
Jeffree, C. E. 1986. The cuticle, epicuticular waxes and trichomes of plants, with reference to their structure, functions and evolution. In Insects and the plant surface (B. E. Juniper & S. R. Southwood, eds.). Edward Arnold, London, p. 23-63.
Jeffree, C. E. 2006. The fine structure of the plant cuticle. In Biology of the plant cuticle (M. Riederer & C. Müller, eds.). Blackwell, Oxford, p. 11-125.
Jeffree, C. E., Baker, E. A. & Holloway, P. J. 1975. Ultrastructure and recrystallization of plant epicuticular waxes. New Phytologist 75:539-549.
Jeffree, C. E., Baker, E. A. & Holloway, P. J. 1976. Origins of the fine structure of plant epicuticular waxes. In Microbiology of aerial plant surfaces (C. H. Dickinson & T. F. Press, eds.). Academic Press, London, p. 119-158.
Johnson, R. P. C. & Jeffree, C. E. 1970. Negative stain in wax tubes from the surface of Sitka spruce leaves. Planta 95:179-182.
Kim, K. W., Lee, I. J., Kim, C. S., Lee, D. K. & Park, E. W. 2011. Micromorphology of epicuticular waxes and epistomatal chambers of pine species by electron microscopy and white light scanning interferometry. Microscopy and Microanalysis 17:118-124.
Koch, K. & Ensikat, H. J. 2008. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 39:759-772.
Koch, K., Bhushan, B. & Barthlott, W. 2008. Diversity of structure, morphology and wetting of plant surfaces. Soft Matter 4:1943-1963.
Kolattukudy, P. E. 1980. Biopolyester membranes of plants: cutin and suberin. Science 208:990-1000.
Kolattukudy, P. E. 2001. Polyesters in higher plants. In Advances in biochemical engineering and biotechnology (T. Scheper, ed.) Springer, Berlin, p. 4-49.
Matas, A. J., Sanz, M. J. & Heredia, A. 2003. Studies on the structure of the plant wax nonacosan-10-ol, the main component of epicuticular wax conifers. International Journal of Biological Macromolecules 33:31-35.
Mattfeld, J. 1926. Die Europäischen und Mediterranen Abies Arten. Die Pflanzenareale 1:22-29 (in German).
Mauri, A., de Rigo, D., & Caudullo, G. 2016. Abies alba in Europe: distribution, habitat, usage and threats. In European atlas of forest tree species. (J. San-Miguel-Ayanz, D. de Rigo, G. Caudullo, T. Houston Durrant, A. Mauri, eds.) Publication Office of the European Union. Mitić, Z. S., Zlatković, B. K., Miljković, M. S., Jovanović, S. Č., Marin,
P. D. & Stojanović, G. S. 2017. First insights into micromorphology of needle epicuticular waxes of south-eastern european Pinus nigra
J. F. Arnold populations. Iheringia. Série Botânica 72:373-379. Nikolić, B., Tešević, V., Đorđević, I., Todosijević, M., Jadranine, M.,
Bojović, S. & Marin, P. 2012. Population variability of nonacosan- 10-ol and n-Alkanes in needle cuticular waxes of Macedonian pine (Pinus peuce Griseb.). Chemistry & Biodiversity 9:1155-1165.
Nikolić, J. S., Jovanović, S. Č., Zlatković, B. K., Stojanović, G. S., & Mitić, Z. S. 2021b. Variability of headspace volatiles in native population of Abies x borisii-regis from the central Rhodopes. Biologica Nyssana 12:23-32.
Nikolić, J. S., Zlatković, B. K., Jovanović, S. Č., Stojanović, G. S., Marin,
P. D., & Mitić, Z. S. 2021a. Needle volatiles as chemophenetic markers in differentiation of natural populations of Abies alba, A. x borisii-regis, and A. cephalonica. Phytochemistry 183:112612.
Panetsos, C. P. 1975. Monograph of Abies cephalonica Loudon. Annals of Forest Science (Zagreb) 7:1-18.
Peveling, E., Burg, H. & Tenberge, K. B. 1992. Epiphytic algae and fungi on spruce needles. Symbiosis 12:173-187.
Ramos, G. Q. 2015. Análise morfológica e química das folhas de Anacardium occidentale L. Tese 105 f. Universdade Federal do Amapá, Pró-reitoria de pesquisa e Pós- graduação programa de Pós-graduação em ciências farmacêuticas. Macapá.
Riding, R. T., Percy, K. E. 1985. Effects of SO2 and other air pollutants on the morphology of epicuticular waxes in needles of Pinus strobus and Pinus banksiana. New Phytologist 99:555-563.
Riederer, M. 1989. The cuticles of conifers: structure, composition and transport properties. In Das entdeckte geheimnis der natur (C. K. Sprengel, ed.). Friedrich vieweg dem Aeltern, Berlin.
Tomaszewski, D. & Zieliński, J. 2014. Epicuticular wax structures on stems and comparison between stems and leaves - a survey. Flora 209:215-232.
Tuomisto, H. 1988. Use of Picea abies needles as indicators of air pollution: epicuticular wax morphology. Annales Botanici Fennici 23:351-364.
Walton, T. J. 1990. Waxes, cutin and suberin. In Lipids, membranes and aspects of photobiology. Methods in plant biochemistry (J. L Harwood, J. R. Bowyer, eds.). Academic Press, London, p. 105-158. Wells, L. G. & Franich, R. A. 1977. Morphology of epicuticular wax on primary needles of Pinus radiata seedling. New Zealand Journal of Botany 15:525-9.
Yoshie, F. & Sakai, A. 1985. Types of Florin rings, distributional patterns of epicuticular wax, and their relationships in the genus Pinus. Canadian journal of Botany 63:12.